Accesso libero

Optimization of electrocoagulation of instant coffee production wastewater using the response surface methodology

   | 08 lug 2017
INFORMAZIONI SU QUESTO ARTICOLO

Cita

1. Selvamurugan, M., Doraisamy, P. & Maheswari, M. (2010). An integrated treatment system for coffee processing wastewater using anaerobic and aerobic process. Ecol. Eng. 36, 1686–1690. DOI: 10.1016/j.ecoleng.2010.07.013.10.1016/j.ecoleng.2010.07.013Search in Google Scholar

2. Zayas, T.P., Geissler, G. & Hernandez, F. (2007). Chemical oxygen demand reduction in coffee wastewater through chemical flocculation and advanced oxidation processes. J. Environ. Sci. 19, 300–305. DOI: 10.1016/S1001-0742(07)60049-7.10.1016/S1001-0742(07)60049-7Search in Google Scholar

3. Al-Mutairi, N.Z. (2006). Coagulant toxicity and effectiveness in a slaughterhouse wastewater treatment plant. Ecotoxicol. Environ. Saf. 65, 74–83. DOI: 10.1016/j.ecoenv.2005.05.013.10.1016/j.ecoenv.2005.05.01316040124Search in Google Scholar

4. Satori, H. & Kawase, Y. (2014). Decolorization of dark brown colored coffee effluent using zinc oxide particles: The role of dissolved oxygen in degradation of colored compounds. J. Environ. Manage. 139, 172–179. DOI: 10.1016/j.jenvman.2014.02.032.10.1016/j.jenvman.2014.02.03224698992Search in Google Scholar

5. Hang, Y.D. & Woodams, E.E. (1979). A Process for the Removal of Coffee Color from Wastewater. J. Food Sci. 44, 246–247. DOI: 10.1111/j.1365-2621.1979.tb10052.x.10.1111/j.1365-2621.1979.tb10052.xSearch in Google Scholar

6. Devi, R. (2010). Innovative Technology of COD and BOD Reduction from Coffee Processing Wastewater Using Avocado Seed Carbon (ASC). Water, Air, Soil Pollut. 207, 299–306. DOI: 10.1007/s11270-009-0137-2.10.1007/s11270-009-0137-2Search in Google Scholar

7. Qiao, W., Takayanagi, K., Shofie, M., Niu, Q., Yu, H.Q. & Li, Y.Y. (2013). Thermophilic anaerobic digestion of coffee grounds with and without waste activated sludge as co-substrate using a submerged AnMBR: System amendments and membrane performance. Bioresour. Technol. 150, 249–258. DOI: 10.1016/j.biortech.2013.10.002.10.1016/j.biortech.2013.10.00224177158Search in Google Scholar

8. Benincá, C., Vargas, F.T., Martins, M.L., Gonçalves, F.F., Vargas, R.P., Freire, F.B. & Zanoelo, E.F. (2016). Removal of clomazone herbicide from a synthetic effluent by electrocoagulation. Water Sci. Technol. 73, 2944–2952. DOI: 10.2166/wst.2016.133.10.2166/wst.2016.13327332840Search in Google Scholar

9. Abdel, S.G.A., Baraka, A.M., Omran, K.A. & Mokhtar, M.M. (2012). Removal of Some Pesticides from the Simulated Waste Water by Electrocoagulation Method Using Iron Electrodes. Int. J. Electrochem. 7, 6654–6665.Search in Google Scholar

10. Aitbara, A., Cherifi, M., Hazourli, S. & Leclerc, J.P. (2016). Continuous treatment of industrial dairy effluent by electrocoagulation using aluminum electrodes. Desalin. Water. Treat. 57, 3395–3404. DOI: 10.1080/19443994.2014.989411.10.1080/19443994.2014.989411Search in Google Scholar

11. Mollah, M.Y.A., Morkovsky, P., Gomes, J.A.G., Kesmez, M., Parga, J. & Cocke, D.L. (2004). Fundamentals, present and future perspectives of electrocoagulation. J. Hazard. Mater. 114, 199–210. DOI: 10.1016/j.jhazmat.2004.08.009.10.1016/j.jhazmat.2004.08.00915511592Search in Google Scholar

12. Moradi, M., Eslami, A. & Ghanbari, F. (2016). Direct Blue 71 removal by electrocoagulation sludge recycling in photo-Fenton process: response surface modeling and optimization. Desalin. Water. Treat. 57, 4659–4670. DOI: 10.1080/19443994.2014.995714.10.1080/19443994.2014.995714Search in Google Scholar

13. Bui, H.M. (2016). Modeling the removal of Sunfix Red S3B from aqueous solution by electrocoagulation process using artificial neural network. J. Serb. Chem. Soc. 81, 959–974. DOI: 10.2298/JSC160108032M.10.2298/JSC160108032MSearch in Google Scholar

14. Heffron, J., Marhefke, M. & Mayer, B.K. (2016). Removal of trace metal contaminants from potable water by electrocoagulation. Sci. Rep. 6, 1–9. DOI: 10.1038/srep28478.10.1038/srep28478491484027324564Search in Google Scholar

15. Montgomery, D.C., Design and Analysis of Experiments, Eighth ed., John Wiley & Sons, Inc., United States, 2013.Search in Google Scholar

16. Daneshvar, N., Khataee, A.R., Amani Ghadim, A.R. & Rasoulifard, M.H. (2007). Decolorization of C.I. Acid Yellow 23 solution by electrocoagulation process: Investigation of operational parameters and evaluation of specific electrical energy consumption (SEEC). J. Hazard. Mater. 148, 566–572. DOI: 10.1016/j.jhazmat.2007.03.028.10.1016/j.jhazmat.2007.03.02817428605Search in Google Scholar

17. Körbahti, B.K., Aktaş, N. & Tanyolaç, A. (2007). Optimization of electrochemical treatment of industrial paint wastewater with response surface methodology. J. Hazard. Mater. 148, 83–90. DOI: 10.1016/j.jhazmat.2007.02.005.10.1016/j.jhazmat.2007.02.00517374443Search in Google Scholar

18. Gengec, E., Kobya, M., Demirbas, E., Akyol, A. & Oktor, K. (2012). Optimization of baker’s yeast wastewater using response surface methodology by electrocoagulation. Desalination 286, 200-209. DOI: 10.1016/j.desal.2011.11.023.10.1016/j.desal.2011.11.023Search in Google Scholar

19. Khayet, M., Zahrim, A.Y. & Hilal, N. (2011). Modelling and optimization of coagulation of highly concentrated industrial grade leather dye by response surface methodology. Chem. Eng. J. 167, 77–83. DOI: 10.1016/j.cej.2010.11.108.10.1016/j.cej.2010.11.108Search in Google Scholar

20. Federation, W.E. & American Public Health, A., Standard methods for the examination of water and wastewater, American Public Health Association (APHA), 2005.Search in Google Scholar

21. Barrera-Díaz, C., Palomar-Pardavé, M., Romero-Romo, M. & Martínez, S. (2003). Chemical and electrochemical considerations on the removal process of hexavalent chromium from aqueous media. J. Appl. Electrochem. 33, 61–71. DOI: 10.1023/A:1022983919644.10.1023/A:1022983919644Search in Google Scholar

eISSN:
1899-4741
Lingua:
Inglese
Frequenza di pubblicazione:
4 volte all'anno
Argomenti della rivista:
Industrial Chemistry, Biotechnology, Chemical Engineering, Process Engineering