Accesso libero

Effect of Gluconacetobacter xylinus cultivation conditions on the selected properties of bacterial cellulose

INFORMAZIONI SU QUESTO ARTICOLO

Cita

1. Chawla, P.R., Bajaj, I.B., Survase, S.A. & Singhal, R.S. (2009). Microbial cellulose: fermentative production and applications. Food Technol. Biotechnol. 47(2), 107–124.Search in Google Scholar

2. Castro, C., Zuluaga, R., Álvarez, C., Putaux, J.L., Caro, G., Rojas, O.J., Mondragon, I. & Ganán, P. (2012). Bacterial cellulose produced by a new acid-resistant strain of Gluconacetobacter genus. Carbohyd. Polym. 89(4), 1033–1037. DOI: 10.1016/j.carbpol.2012.03.045.10.1016/j.carbpol.2012.03.045Search in Google Scholar

3. Hameed, N.D., Al-Jailawi, M.H. & Jasim, H.M. (2012). Enhancement and optimization of cellulose production by Gluconacetobacter xylinus N2. Sci. J. King Faisal Univ. (Basic and Applied Sciences) 13(2), 77–89.Search in Google Scholar

4. Nakagaito, A.N., Nogi, M. & Yano, H. (2010). Displays from transparent films of natural nanofibers. MRS Bulletin 35(3), 214–218. DOI: http://dx.doi.org/10.1557/mrs2010.65410.1557/mrs2010.654Search in Google Scholar

5. Saibuatong, O.A. & Phisalaphong, M. (2010). Novo aloe vera - bacterial cellulose composite film from biosynthesis. Carbohyd. Polym. 79(2), 455–460. DOI: 10.1016/j.carbpol.2009.08.039.10.1016/j.carbpol.2009.08.039Search in Google Scholar

6. Dahman, Y., Jayasuriya, K.E. & Kalis, M. (2010). Potential of biocellulose nanofibers production from agricultural renewable resources: Preliminary study. Appl. Biochem. Biotech. 162(6), 1647–1659. DOI: 10.1007/s12010-010-8946-8.10.1007/s12010-010-8946-8Search in Google Scholar

7. Hornung, M., Ludwig, M., Gerrard, A.M. & Schmauder, H.P. (2006). Optimizing the production of bacterial cellulose in surface culture: evaluation of substrate mass transfer influences on the bioreaction (Part 1). Eng. Life Sci. 6(6), 546–551. DOI: 10.1002/elsc.200620162.10.1002/elsc.200620162Search in Google Scholar

8. Bielecki, S., Krystynowicz, A., Turkiewicz, M. & Kalinowska, H. (2005). Bacterial cellulose. In A. Steinbüchel & S.K. Rhee (Eds.), Polysaccharides and Polyamides in the Food Industry (pp. 31–85). Weinheim: Wiley-VCH Verlag.Search in Google Scholar

9. Huang, Y., Zhu, C., Yang, J., Nie, Y., Chen, C. & Sun, D. (2013). Recent advances in bacterial cellulose. Cellulose 21(1), 1–30. DOI: 10.1007/s10570-013-0088-z.10.1007/s10570-013-0088-zSearch in Google Scholar

10. Legge, R.L. (1990). Microbial cellulose as a specialty chemical. Biotechnol. Adv. 8(2), 303–319. DOI: 10.1016/0734-9750(90)91067-q.10.1016/0734-9750(90)91067-QSearch in Google Scholar

11. Lin, S.P., Calvar, I.L., Catchmark, J.M., Liu, J.R., Demirci, A. & Cheng K.C. (2013). Biosynthesis, production and applications of bacterial cellulose. Cellulose 20(5), 2191–2219. DOI: 10.1007/s10570-013-9994-3.10.1007/s10570-013-9994-3Search in Google Scholar

12. Ruka, D.R., Simon, G.P. & Dean, K.M. (2012). Altering the growth conditions of Gluconacetobacter xylinus to maximize the yield of bacterial cellulose. Carbohyd. Polym. 89(2), 613–622. DOI: 10.1016/j.carbpol.2012.03.059.10.1016/j.carbpol.2012.03.05924750766Search in Google Scholar

13. Surma-Ślusarska, B., Presler, S. & Danielewicz, D. (2008). Characteristics of bacterial cellulose obtained from Acetobacter xylinum culture for application in papermaking. Fibres Text. East. Eur. 4(69), 108–111.Search in Google Scholar

14. El-Saied, H., Basta, A.H. & Gobran, R.H. (2004). Research progress in friendly environmental technology for the production of cellulose products (bacterial cellulose and its application). Polym-Plast. Technol. Eng. 43(3), 797–820. DOI: 10.1081/PPT-120038065.10.1081/PPT-120038065Search in Google Scholar

15. Santos, S.M., Carbajo, J.M. & Villar, J.C. (2013). The effect of carbon and nitrogen sources on bacterial cellulose production and properties from Gluconacetobacter sucrofermentans CECT 7291 focused on its use in degraded paper restoration. BioResourses 8(3), 3630–3645.10.15376/biores.8.3.3630-3645Search in Google Scholar

16. Sheykhnazari, S., Tabarsa, T., Ashori, A., Shakeri, A. & Golalipour, M. (2011). Bacterial synthesized cellulose nanofibers; Effects of growth times and culture mediums on the structural characteristics. Carbohyd. Polym. 86(3), 1187–1191. DOI: 10.1016/j.carbpol.2011.06.011.10.1016/j.carbpol.2011.06.011Search in Google Scholar

17. Păvăloiu, R.D., Stoica-Guzun, A. & Dobre, T. (2015). Swelling studies of composite hydrogels based on bacterial cellulose and gelatin. U.P.B. Sci. Bull. Ser. B 77(1), 53–62.Search in Google Scholar

18. Cheng, Q., Wang, J., McNeel, J. & Jacobson, P. (2010). Water retention value measurements of cellulosic materials using a centrifuge technique. BioResourses 5(3), 1945–1954.10.15376/biores.5.3.1945-1954Search in Google Scholar

19. Tsouko, E., Kourmentza, C., Ladakis, D., Kopsahelis, N., Mandala, I., Papanikolaou, S., Paloukis, F., Alves, V. & Koutinas, A. (2015). Bacterial cellulose production from industrial waste and by-product streams. Int. J. Mol. Sci. 16(7), 14832–14849. DOI: 10.3390/ijms160714832.10.3390/ijms160714832Search in Google Scholar

20. Hesse, S. & Kondo, T. (2005). Behavior of cellulose production of Acetobacter xylinum in 13C-enriched cultivation media including movements on nematic ordered cellulose templates. Carbohyd. Polym. 60(4), 457–465. DOI: 10.1016/j.carbpol.2005.02.018.10.1016/j.carbpol.2005.02.018Search in Google Scholar

21. Koizumi, S., Tomita, Y., Kondo, T. & Hashimoto, T. (2009). What factors determine hierarchical structure of microbial cellulose – interplay among physics, chemistry and biology. Macromol. Symp. 279(1), 110–118. DOI: 10.1002/masy.200950517.10.1002/masy.200950517Search in Google Scholar

22. Ross, P., Weinhouse, H., Aloni, Y., Michaeli, D., Weinberger-Ohana, P., Mayer, R., Braun, S., de Vroom, E., van der Marel, G.A., van Boom, J.H. & Benziman, M. (1987). Regulation of cellulose synthesis in Acetobacter xylinum by cyclic diguanylic acid. Nature 325, 279–281. DOI: 10.1038/325279a0.10.1038/325279a0Search in Google Scholar

23. Keshk, S. & Sameshima, K. (2005). Evaluation of different carbon sources for bacterial cellulose production. Afr. J. Biotechnol. 4(6), 478–482. DOI: 10.5897/AJB2005.000-3087.Search in Google Scholar

24. Toda, K., Asakura, T., Fukaya, M., Entani, E. & Kawamura, Y. (1997). Cellulose production by acetic acid-resistant Acetobacter xylinum. Ferment. Bioeng. 84(3), 228–231. DOI: 10.1016/S0922-338X(97)82059-4.10.1016/S0922-338X(97)82059-4Search in Google Scholar

25. Park, J.K., Hyun, S.H. & Jung, J.Y. (2004). Conversion of G. hansenii PJK into non-cellulose-producing mutants according to the culture condition. Biotechnol. Bioproc. Eng. 9(5), 383–388. DOI: 10.1007/BF02933062.10.1007/BF02933062Search in Google Scholar

26. Çoban, E.P. & Biyik, H. (2011). Effect of various carbon and nitrogen sources on cellulose synthesis by Acetobacter lovaniensis HBB5. Afr. J. Biotechnol. 10(27), 5346–5354. DOI: 10.5897/AJB10.1693.Search in Google Scholar

27. Son, H.J., Heo, M.S., Kim, Y.G. & Lee, S.J. (2001). Optimization of fermentation conditions for the production of bacterial cellulose by a newly isolated Acetobacter sp. A9 in shaking cultures. Biotechnol. Appl. Biochem. 33(1), 1–5. DOI: 10.1042/BA20000065.10.1042/BA2000006511171030Search in Google Scholar

28. Yunoki, S., Osada, Y., Kono, H. & Takai, M. (2004). Role of ethanol in improvement of bacterial cellulose production: analysis using 13C-labeled carbon sources. Food. Sci. Technol. Res. 10(3), 307–313. DOI: 10.3136/fstr.10.307.10.3136/fstr.10.307Search in Google Scholar

29. Park, J.K., Jung, J.Y. & Park, Y.H. (2003). Cellulose production by Gluconacetobacter hansenii in a medium containing ethanol. Biotechnol. Lett. 25(24), 2055–2059. DOI: 10.1023/B:BILE.0000007065.63682.18.10.1023/B:BILE.0000007065.63682.18Search in Google Scholar

30. Pa’, E.N., Hamid, N.I.A., Khairuddin, N., Zahan, K.A., Seng, K.F. & Siddique, B.M. (2014). Effect of different drying methods on the morphology, crystallinity, swelling ability and tensile properties of nata de coco. Sains Malaysiana 43(5), 767–773.Search in Google Scholar

31. Lin, S.B., Hsu, C.P., Chen, L.C. & Chen, H.H. (2009). Adding enzymatically modified gelatin to enhance the rehydration abilities and mechanical properties of bacterial cellulose. Food Hydrocol. 23(8), 2195–2203. DOI: 10.1016/j.foodhyd.2009.05.011.10.1016/j.foodhyd.2009.05.011Search in Google Scholar

32. Schrecker, S.T. & Gostomski, P.A. (2005). Determining the water holding capacity of microbial cellulose. Biotechnol. Lett. 27(19), 1435–1438. DOI: 10.1007/s10529-005-1465-y.10.1007/s10529-005-1465-y16231213Search in Google Scholar

33. Gelin, K., Bodin, A., Gatenholm, P., Mihranyan, A., Edwards, K. & Strømme, M. (2007). Characterization of water in bacterial cellulose using dielectric spectroscopy and electron microscopy. Polymer 48(26), 7623–7631. DOI: 10.1016/j.polymer.2007.10.039.10.1016/j.polymer.2007.10.039Search in Google Scholar

34. Tang, W., Jia, S., Jia, Y. & Yang, H. (2010). The influence of fermentation conditions and post-treatment methods on porosity of bacterial cellulose membrane. World J. Microb. Biotechnol. 26(1), 125–131. DOI: 10.1007/s11274-009-0151-y.10.1007/s11274-009-0151-ySearch in Google Scholar

35. Al-Shamary, E.E. & Al-Darwash, A.K. (2013). Influence of fermentation condition and alkali treatment on the porosity and thickness of bacterial cellulose membranes. The Online J. Sci. Technol. 3(2), 194–203.Search in Google Scholar

36. Shezad, O., Khan, S., Khan, T. & Park, J.K. (2010). Physico-chemical and mechanical characterization of bacterial cellulose produced with an excellent productivity in static conditions using a simple fed-batch cultivation strategy. Carbohyd. Polym. 82(1), 173–180. DOI: 10.1016/j.carbpol.2010.04.052.10.1016/j.carbpol.2010.04.052Search in Google Scholar

37. Ougiya, H., Watanabe, K., Matsumura, T. & Yoshinaga. F. (1998). Relationship between suspension properties and fibril structure of disintegrated bacterial cellulose. Biosci. Biotech. Bioch. 62(9), 1714–1719. DOI: 10.1271/bbb.62.1714.10.1271/bbb.62.171427392683Search in Google Scholar

38. Shah, N., Ha, J.H. & Park, J.K. (2010). Effect of reactor surface on production of bacterial cellulose and water soluble oligosaccharides by Gluconacetobacter hansenii PJK. Biotechnol. Bioproc. Eng. 15(1), 110–118. DOI: 10.1007/s12257-009-3064-6.10.1007/s12257-009-3064-6Search in Google Scholar

39. Tahara, N., Tabuchi, M., Watanabe, K., Yano, H., Morinaga, Y. & Yoshinaga, F. (1997). Degree of polymerization of cellulose from Acetobacter xylinum BPR2001 decreased by cellulase produced by the strain. Biosci. Biotech. Bioch. 61(11), 1862–1865. DOI: 10.1271/bbb.61.1862.10.1271/bbb.61.186227396738Search in Google Scholar

40. Liu, Y., Thibodeaux, D., Gamble, G., Bauer, P. & van Derveer, D. (2012). Comparative investigation of Fourier Transform Infrared (FT-IR) spectroscopy and X-ray Diffraction (XRD) in the determination of cotton fiber crystallinity. Appl. Spectrosc. 66(8), 983–986. DOI: 10.1366/12-06611.10.1366/12-0661122800914Search in Google Scholar

eISSN:
1899-4741
Lingua:
Inglese
Frequenza di pubblicazione:
4 volte all'anno
Argomenti della rivista:
Industrial Chemistry, Biotechnology, Chemical Engineering, Process Engineering