INFORMAZIONI SU QUESTO ARTICOLO

Cita

1. Kopanda, J., MacZura, G. & Hart, L. (1990). Alumina Chemicals, Science and Technology Handbook. In Alumina Chemicals, Science and Technology Handbook.Search in Google Scholar

2. Yoldas, B.E. (1976). Thermal stabilization of an active alumina and effect of dopants on the surface area. J. Mat. Sci. 11, 465–470. DOI: 10.1007/BF00540927.10.1007/BF00540927Search in Google Scholar

3. Ozawa, M., Kato, O., Suzuki, S., Hattori, Y. & Yamamura, M. (1996). Sintering and phase evolution of γ-Al2O3 with transition-metals addition at around α-transition temperature. J. Mat. Sci. Lett. 15, 564–567. DOI: 10.1007/BF00579251.10.1007/BF00579251Search in Google Scholar

4. Mei, D., Kwak, J.H., Hu, J., Cho, S.J., Szanyi, J., Allard, L.F. & Peden, C.H.F. (2010). Unique Role of Anchoring Penta-Coordinated Al3+ Sites in the Sintering of γ-Al2O3-Supported Pt Catalysts. J. Phys. Chem. Lett. 1, 2688–2691. DOI: 10.1021/jz101073p.10.1021/jz101073pSearch in Google Scholar

5. Paglia, G., Buckley, C.E., Rohl, A.L., Hart, R.D., Winter, K., Studer, A.J., Hunter, B.A. & Hanna, J.V. (2004). Boehmite derived γ-alumina system. 1. Structural evolution with temperature, with the identification and structural determination of a new transition phase, γ-alumina. Chem. Mat. 16, 220–236. DOI: 10.1021/cm034917j.10.1021/cm034917jSearch in Google Scholar

6. Pecharroman, C., Sobrados, I., Iglesias, J.E., Gonzalez-Carreno, T. & Sanz, J. (1999). Thermal evolution of transitional aluminas followed by NMR and IR spectroscopies. J. Phys. Chem. B. 103, 6160–6170. DOI: 10.1021/jp983316q.10.1021/jp983316qSearch in Google Scholar

7. Tsyganenko, A.A. & Mardilovich, P.P. (1996). Structure of alumina surfaces. J. Chem. Soc. Faraday Trans 92, 4843–4852. DOI: 10.1039/FT9969204843.10.1039/ft9969204843Search in Google Scholar

8. Busca, G. (1998). Spectroscopic characterization of the acid properties of metal oxide catalysts. Catal Today 41, 191–206. DOI: 10.1016/S0920-5861(98)00049-2.10.1016/S0920-5861(98)00049-2Search in Google Scholar

9. Morterra, C. & Magnacca, G. (1996). A case study: surface chemistry and surface structure of catalytic aluminas, as studied by vibrational spectroscopy of adsorbed species. Catal Today 27, 497–532. DOI: 10.1016/0920-5861(95)00163-8.10.1016/0920-5861(95)00163-8Search in Google Scholar

10. Digne, M., Sautet, P., Raybaud, P., Euzen, P. & Toulhoat, H. (2002). Hydroxyl groups on γ-alumina surfaces: A DFT study. J. Catal. 211, 1–5. DOI: 10.1006/jcat.2002.3741.10.1006/jcat.2002.3741Search in Google Scholar

11. Bravo-Suárez, J.J., Chaudhari, R.V. & Subramaniam, B. (2013). Design of Heterogeneous Catalysts for Fuels and Chemicals Processing: An Overview. Am. Chem. Soc.). DOI: 10.1021/bk-2013-1132.ch001.10.1021/bk-2013-1132.ch001Search in Google Scholar

12. Armstrong, W.E., Ryland, L.B. & Voge, H.H. (1978). Catalyst Comprising Iridium or iridium-ruthenium catalyst for hydrazine decomposition. In US patent no. 4124538.: U.S. Patent and Trademark Office.Search in Google Scholar

13. Kappenstein, C. & Joulin, J. (2006). Ceramics as Catalysts and Catalyst Supports for Propulsion Applications-The Objectives and the Challenges. Adv. Sci. Technol. (Trans. Tech. Publ.), 2143–2152. DOI: 10.4028/www.scientific.net/AST.45.2143.10.4028/www.scientific.net/AST.45.2143Search in Google Scholar

14. Pakdehi, S., Rasoolzadeh, M. & Zolfaghari, R. (2014). Synthesize and Investigation of the Catalytic Behavior of Ir/γ-Al2O3 Nanocatalyst. Adv. Mater. Res. 829. 163–167. DOI: 10.4028/www.scientific.net/AMR.829.163.10.4028/www.scientific.net/AMR.829.163Search in Google Scholar

15. Kwak, J.H., Hu, J., Mei, D., Yi, C.W., Kim, D.H., Peden, C.H.F., Allard, L.F. & Szanyi, J. (2009). Coordinatively Un-saturated Al3+ Centers as Binding Sites for Active Catalyst Phases of Platinum on γ-Al2O3. In Science 1670–1673. DOI: 10.1126/science.1176745.10.1126/science.1176745Search in Google Scholar

16. Chen, F.R., Davis, J.G. & Fripiat, J.J. (1992). Aluminum Coordination and Lewis Acidity in Transition Aluminas. J. Cat. 133, 263–278. DOI: 10.1016/0021-9517(92)90239-E.10.1016/0021-9517(92)90239-ESearch in Google Scholar

17. Santos, P.S., Santos, H.S. & Toledo, S.P. (2000). Standard Transition Aluminas. Electron Microscopy Studies. Mater. Res. 3, 104–114. DOI: 10.1590/S1516-14392000000400003.10.1590/S1516-14392000000400003Search in Google Scholar

18. Kwak, J.H., Hu, J.Z., Kim, D.H., Szanyi, J. & Peden C.H.F. (2007). Penta-coordinated Al3+ ions as preferential nucleation sites for BaO on γ-Al2O3: An ultra-high-magnetic field 27Al MAS NMR study. J. Catal. 251, 189–194. DOI: 10.1016/j.jcat.2007.06.029.10.1016/j.jcat.2007.06.029Search in Google Scholar

19. Kissinger, H.E. (1957). Reaction kinetics in differential thermal analysis. Anal. Chem. 29, 1702–1706. DOI: 10.1021/ac60131a045.10.1021/ac60131a045Search in Google Scholar

20. Nguefack, M., Popa, A.F., Rossignol, S. & Kappensteina, C. (2003). Preparation of alumina through a sol-gel process, synthesis characterization, thermal evolution and model of intermediate Boehmite. Phys. Chem. Chem. Phys. 5, 4279–4289. DOI: 10.1039/B306170A.10.1039/B306170ASearch in Google Scholar

eISSN:
1899-4741
Lingua:
Inglese
Frequenza di pubblicazione:
4 volte all'anno
Argomenti della rivista:
Industrial Chemistry, Biotechnology, Chemical Engineering, Process Engineering