Accesso libero

Kinetic, isotherm and thermodynamics investigation on adsorption of divalent copper using agro-waste biomaterials, Musa acuminata, Casuarina equisetifolia L. and Sorghum bicolor

INFORMAZIONI SU QUESTO ARTICOLO

Cita

1. Larous, S. & Meniai, A.H. (2012). Removal of copper (II) from aqueous solution by agricultural by-products-sawdust. Ener. Proc. 18, 915–923. DOI: 10.1016/j.egypro.2012.05.106.10.1016/j.egypro.2012.05.106Search in Google Scholar

2. Rozaini, C.A., Jain, K., Oo, C.W., Tan, K.W., Tan, L.S., Azraa, A. & Tong, K.S. (2010). Optimization of nickel and copper ions removal by modified mangrove barks. Int. J. Chem. Eng. Appl. 1(1), 84–89. DOI: 10.7763/IJCEA.2010.V1.14.10.7763/IJCEA.2010.V1.14Search in Google Scholar

3. WHO, World Health Organization (2004). Guidelines for Drinking-water Quality, third ed., Recommendations, Geneva.Search in Google Scholar

4. Manzoor, Q., Nadeem, R., Iqbal, M., Saeed, R. & Ansari, T.M. (2013). Organic acids pretreatment effect on Rosa bourbonia phyto-biomass for removal of Pb (II) and Cu (II) from aqueous media. Biores. Technol. 132, 446–452. DOI: 10.1016/j.biortech.2013.01.156.10.1016/j.biortech.2013.01.156Search in Google Scholar

5. Patrulea, V., Negrulescu, A., Mincea, M., Pitulice, L., Spiridon, O. & Ostafe, V. (2013). Optimization of the removal of copper(ii) ions from aqueous solution on chitosan and cross-linked chitosan beads. BioResources. 8. DOI: 10.15376/biores.8.1.1147-1165.10.15376/biores.8.1.1147-1165Search in Google Scholar

6. Acar, F.N. & Eren, Z. (2006). Removal of Cu(II) ions by activated poplar sawdust (Samsun Clone) from aqueous solutions. J. Hazard. Mater. 137(2), 909–914. DOI: 10.1016/j.jhazmat.2006.03.014.10.1016/j.jhazmat.2006.03.014Search in Google Scholar

7. Ramya, P.M., Venkata, N.R., Jayasravanthi, M. & Dulla, B.J. (2015). Chemical oxygen demand reduction from coffee processing waste water-A comparative study on usage of biosorbents prepared from agricultural wastes, Global NEST J. 17(2), 291–300.Search in Google Scholar

8. Cestari, A.R., Vieira, E.F., de Oliveira, I.A. & Bruns, R.E. (2007). The removal of Cu(II) and Co(II) from aqueous solutions using cross-linked chitosan-evaluation by the factorial design methodology, J. Hazard. Mater. 143(1–2), 8–16. DOI: 10.1016/j.jhazmat.2006.08.063.10.1016/j.jhazmat.2006.08.063Search in Google Scholar

9. Lima, I.S., Lazarin, A.M. & Airoldi, C. (2005). Favorable chitosan/cellulose film combinations for copper removal from aqueous solutions. Int. J. Biol. Macromol. 36(1), 79–83. DOI: 10.1016/j.ijbiomac.2005.04.001.10.1016/j.ijbiomac.2005.04.001Search in Google Scholar

10. Jamnongkan, T., Kantarot, K., Niemtang, K., Pansila, P.P. & Wattanakornsiri, A. (2014). Kinetics and mechanism of adsorptive removal of copper from aqueous solution with poly (vinyl alcohol) hydrogel. Trans. Nonfer. Met. Soc. China 24(10), 3386–3393. DOI: 10.1016/S1003-6326(14)63481-6.10.1016/S1003-6326(14)63481-6Search in Google Scholar

11. Weng, C.H., Lin, Y.T., Hong, D.Y., Sharma, Y.C., Chen, S.C. & Tripathi, K. (2014). Effective removal of copper ions from aqueous solution using base treated black tea waste. Ecol. Eng. 67, 127–133. DOI: 10.1016/j.ecoleng.2014.03.053.10.1016/j.ecoleng.2014.03.053Search in Google Scholar

12. Vieira, M.G.A., de Almeida Neto, A.F., da Silva, M.G.C., Carneiro, C.N. & Melo Filho, A.A. (2014). Adsorption of lead and copper ions from aqueous effluents on rice husk ash in a dynamic system. Braz. J. Chem. Eng. 31(2), 519–529. DOI: 10.1590/0104-6632.20140312s00002103.10.1590/0104-6632.20140312s00002103Search in Google Scholar

13. Hossain, M.A., Ngo, H.H., Guo, W.S. & Setiadi, T. (2012). Adsorption and desorption of copper (II) ions onto garden grass. Biores. Technol. 121, 386–395. DOI: 10.1016/j.biortech.2012.06.119.10.1016/j.biortech.2012.06.119Search in Google Scholar

14. Liang, S., Guo, X., Feng, N. & Tian, Q. (2010). Isotherms, kinetics and thermodynamic studies of adsorption of Cu2+ from aqueous solutions by Mg2+/K+ type orange peel adsorbents. J. Hazard. Mater. 174(1), 756–762. DOI: 10.1016/j.jhazmat.2009.09.116.10.1016/j.jhazmat.2009.09.116Search in Google Scholar

15. Bilal, M., Shah, J.A., Ashfaq, T., Gardazi, S.M.H., Tahir, A.A., Pervez, A. & Mahmood, Q. (2013). Waste biomass adsorbents for copper removal from industrial wastewater-A review. J. Hazard. Mater. 263, 322–333. DOI: 10.1016/j.jhazmat.2013.07.071.10.1016/j.jhazmat.2013.07.071Search in Google Scholar

16. Chen, J.P. & Yang, L. (2005). Chemical modification of Sargassum sp. for prevention of organic leaching and enhancement of uptake during metal biosorption. Ind. Eng. Chem. Res. 44(26), 9931–9942. DOI: 10.1021/ie050678t.10.1021/ie050678tSearch in Google Scholar

17. Li, Y., Xia, B., Zhao, Q., Liu, F., Zhang, P., Du, Q. & Xia, Y. (2011). Removal of copper ions from aqueous solution by calcium alginate immobilized kaolin. J. Env. Sci. 23(3), 404–411. DOI: 10.1016/S1001-0742(10)60442-1.10.1016/S1001-0742(10)60442-1Search in Google Scholar

18. Xue, Y., Gao, B., Yao, Y., Inyang, M., Zhang, M., Zimmerman, A.R. & Ro, K.S. (2012). Hydrogen peroxide modification enhances the ability of biochar (hydrochar) produced from hydrothermal carbonization of peanut hull to remove aqueous heavy metals: batch and column tests. Chem. Eng. J. 200, 673–680. DOI: 10.1016/j.cej.2012.06.116.10.1016/j.cej.2012.06.116Search in Google Scholar

19. Annual book of ASTM standards part – 23, (1972). Am. Soc. Test. Mater. Philadelphia.Search in Google Scholar

20. Gong, J.L., Wang, X.Y., Zeng, G.M., Chen, L., Deng, J.H., Zhang, X.R. & Niu, Q.Y. (2012). Copper (II) removal by pectin–iron oxide magnetic nanocomposite adsorbent. Chem. Eng. J. 185, 100–107. DOI: 10.1016/j.cej.2012.01.050.10.1016/j.cej.2012.01.050Search in Google Scholar

21. Li, K., Fu, S., Zhan, H., Zhan, Y. & Lucia, L. (2010). Analysis of the chemical composition and morphological structure of banana pseudo-stem. Bioresources 5(2), 576–585. DOI: 10.15376/biores.5.2.576-585Search in Google Scholar

22. Firdous, R. & Gilani, A.H. (2001). Changes in chemical composition of sorghum as influenced by growth stages and cultivar. Asian Australas. J. Anim. Sci. 14(7), 935–940. DOI: http://dx.doi.org/10.5713/ajas.2001.935.Search in Google Scholar

23. Ogunwande, I.A., Flamini, G., Adefuye, A.E., Lawal, N.O., Moradeyo, S. & Avoseh, N.O. (2011). Chemical compositions of Casuarina equisetifolia L., Eucalyptus toreliana L. and Ficus elastica Roxb. ex Hornem cultivated in Nigeria. S. Afr. J. Bot. 77(3), 645–649. DOI: 10.1016/j.sajb.2011.02.001.10.1016/j.sajb.2011.02.001Search in Google Scholar

24. Lerivrey, J., Dubois, B., Decock, P., Micera, G., Urbanska, J. & Kozłowski, H. (1986). Formation of D-glucosamine complexes with Cu (II), Ni (II) and Co (II) ions. Inorg. Chim. Acta 125(4), 187–190. DOI: 10.1016/S0020-1693(00)81209-8.10.1016/S0020-1693(00)81209-8Search in Google Scholar

25. Mahaninia, M.H., Rahimian, P. & Kaghazchi, T. (2015). Modified activated carbons with amino groups and their copper adsorption properties in aqueous solution. Chin. J. Chem. Eng. 23(1), 50–56. DOI: 10.1016/j.cjche.2014.11.004.10.1016/j.cjche.2014.11.004Search in Google Scholar

26. Sarioglu, M., Atay, Ü.A. & Cebeci, Y. (2005). Removal of copper from aqueous solutions by phosphate rock. Desalination 181(1), 303–311. DOI: 10.1016/j.desal.2005.04.009.10.1016/j.desal.2005.04.009Search in Google Scholar

27. Kizilkaya, B., Tekinay, A.A. & Dilgin, Y. (2010). Adsorption and removal of Cu (II) ions from aqueous solution using pretreated fish bones. Desalination 264(1), 37–47. DOI: 10.1016/j.desal.2010.06.076.10.1016/j.desal.2010.06.076Search in Google Scholar

28. Ge, Y., Cui, X., Kong, Y., Li, Z., He, Y. & Zhou, Q. (2015). Porous geopolymeric spheres for removal of Cu (II) from aqueous solution: Synthesis and evaluation. J. Hazard. Mater. 283, 244–251. DOI: 10.1016/j.jhazmat.2014.09.038.10.1016/j.jhazmat.2014.09.038Search in Google Scholar

29. Lagergren, S. (1898). On the theory of so-called adsorption solutes, The Royal Swedish Academy of Sciences. Handlingar 24(4), 1–39 (in German).Search in Google Scholar

30. Ho, Y.S. & McKay, G. (1999). Pseudo-second order model for sorption processes. Process Biochem. 34(5), 451–465. DOI: 10.1016/S0032-9592(98)00112-5.10.1016/S0032-9592(98)00112-5Search in Google Scholar

31. Ho, Y.S. & McKay, G. (2000). The kinetics of sorption of divalent metal ions onto sphagnum moss peat. Water Res. 34(3), 735–742. DOI: 10.1016/S0043-1354(99)00232-8.10.1016/S0043-1354(99)00232-8Search in Google Scholar

32. Ahluwalia, S.S. & Goyal, D. (2007). Microbial and plant derived biomass for removal of heavy metals from wastewater. Biores. Technol. 98(12), 2243–2257. DOI:10.1016/j.biortech.2005.12.006.10.1016/j.biortech.2005.12.00616427277Search in Google Scholar

33. Igwe, J.C. & Abia, A.A. (2005). Competitive adsorption of Zn (II), Cd (II) and Pb (II) ions from aqueous and nonaqueous solution by maize cob and husk. Afr. J. Biotechnol. 4(10), 1113–1116. DOI: 10.5897/AJB2005.000-3220.Search in Google Scholar

34. Goswami, S. & Ghosh, U.C. (2006). Studies on adsorption behaviour of Cr (VI) onto synthetic hydrous stannic oxide. Water SA, 31(4), 597–602. http://dx.doi.org/10.4314/wsa.v31i4.5150Search in Google Scholar

35. Greluk, M. & Hubicki, Z. (2009). Sorption of SPADNS azo dye on polystyrene anion exchangers: equilibrium and kinetic studies. J. Hazard. Mater. 172(1), 289–297. DOI: 10.1016/j.jhazmat.2009.07.007.10.1016/j.jhazmat.2009.07.00719660863Search in Google Scholar

36. Kumar, P. S., Ramalingam, S., Kirupha, S.D., Murugesan, A., Vidhyadevi, T. & Sivanesan, S. (2011). Adsorption behavior of nickel (II) onto cashew nut shell: Equilibrium, thermodynamics, kinetics, mechanism and process design. Chem. Eng. J. 167(1), 122–131. DOI: 10.1016/j.cej.2010.12.010.10.1016/j.cej.2010.12.010Search in Google Scholar

37. Garg, U.K., Kaur, M.P., Garg, V.K. & Sud, D. (2007). Removal of hexavalent chromium from aqueous solution by agricultural waste biomass. J. Hazard. Mater. 140(1), 60–68. DOI: 10.1016/j.jhazmat.2006.06.056.10.1016/j.jhazmat.2006.06.05616879918Search in Google Scholar

38. Chang, Y., Liu, H., Zha, F., Chen, H., Ren, X. & Lei, Z. (2011). Adsorption of Pb (II) by N-methylimidazole modified palygorskite. Chem. Eng. J. 167(1), 183–189. DOI: 10.1016/j.cej.2010.10.081.10.1016/j.cej.2010.10.081Search in Google Scholar

39. Özçimen, D. & Ersoy-Meriçboyu, A. (2009). Removal of copper from aqueous solutions by adsorption onto chestnut shell and grape seed activated carbons. J. Hazard. Mater. 168(2), 1118–1125. DOI: 10.1016/j.jhazmat.2009.02.148.10.1016/j.jhazmat.2009.02.14819342167Search in Google Scholar

40. Krishnan, K.A. & Anirudhan, T.S. (2003). Removal of cadmium (II) from aqueous solutions by steam-activated sulphurised carbon prepared from sugar-cane bagasse pith: Kinetics and equilibrium studies. Water SA, 29(2), 147–156. http://dx.doi.org/10.4314/wsa.v29i2.4849Search in Google Scholar

41. Zheng, W., Li, X. M., Wang, F., Yang, Q., Deng, P. & Zeng, G.M. (2008). Adsorption removal of cadmium and copper from aqueous solution by areca-a food waste. J. Hazard. Mater. 157(2), 490–495. DOI: 10.1016/j.jhazmat.2008.01.029.10.1016/j.jhazmat.2008.01.02918313210Search in Google Scholar

42. Kumar, U. (2011). Thermodynamics of the Adsorption of Cd (II) from Aqueous Solution on NCRH. I. Jesd. 2(5), 334–336. DOI: 10.7763/IJESD.2011.V2.147.10.7763/IJESD.2011.V2.147Search in Google Scholar

43. Agrawal, A., Sahu, K.K. & Pandey, B.D. (2004). Removal of zinc from aqueous solutions using sea nodule residue. Coll. Surf. A. 237(1), 133–140. DOI: 10.1016/j.colsurfa.2004.01.034.10.1016/j.colsurfa.2004.01.034Search in Google Scholar

44. Tewari, N., Vasudevan, P. & Guha, B.K. (2005). Study on biosorption of Cr (VI) by Mucor hiemalis. Biochem. Eng. J. 23(2), 185–192. DOI: 10.1016/j.bej.2005.01.011.10.1016/j.bej.2005.01.011Search in Google Scholar

45. Sharma, Y.C., Prasad, G. & Rupainwar, D.C. (1991). Removal of Ni (II) from aqueous solutions by sorption. Int. J. Environ. Stud. 37(3), 183–191. DOI: 10.1080/00207239108710629.10.1080/00207239108710629Search in Google Scholar

46. Dai, J. & Mumper, R.J. (2010). Plant phenolics: extraction, analysis and their antioxidant and anticancer properties. Molecules 15(10), 7313–7352. DOI: 10.3390/molecules15107313.10.3390/molecules15107313625914620966876Search in Google Scholar

47. Ho, Y.S., Porter, J.F. & McKay, G. (2002). Equilibrium isotherm studies for the sorption of divalent metal ions onto peat: copper, nickel and lead single component systems. Water Air Soil Poll. 141(1–4), 1–33. DOI: 10.1023/A:1021304828010.10.1023/A:1021304828010Search in Google Scholar

48. Panday, K.K., Prasad, G. & Singh, V.N. (1984). Removal of Cr (V1) from aqueous solutions by adsorption on fly ash-wollastonite. J. Chem. Technol. Biotechnol. 34(7), 367–374. DOI: 10.1002/jctb.5040340703.10.1002/jctb.5040340703Search in Google Scholar

49. Varank, G., Demir, A., Yetilmezsoy, K., Top, S., Sekman, E. & Sinan Bilgili, M. (2012). Removal of 4-nitrophenol from aqueous solution by natural low-cost adsorbents. Indian J. Chem. Technol. 19(1), 7–25.Search in Google Scholar

50. Temkin, M.I. & Pyzhev, V. (1940). Kinetics of ammonia synthesis on promoted iron catalysts. Acta Physio.Chim. URSS, 12(3), 217–222.Search in Google Scholar

51. Dąbrowski, A. (2001). Adsorption-from theory to practice. Adv. Coll. Interface. Sci. 93(1), 135–224. DOI: 10.1016/S0001-8686(00)00082-8.10.1016/S0001-8686(00)00082-8Search in Google Scholar

52. Ertugay, N. & Bayhan, Y.K. (2010). The removal of copper (II) ion by using mushroom biomass (Agaricus bisporus) and kinetic modeling. Desalination 255, 137–142. DOI: 10.1016/j.desal.2010.01.002.10.1016/j.desal.2010.01.002Search in Google Scholar

53. Weng, C.H. & Wu, Y.C. (2012). Potential low-cost biosorbent for copper removal:pineapple leaf powder. J. Environ. Eng.-ASCE 138, 286–292. http://dx.doi.org/10.1061/(ASCE)EE.1943-7870.0000424Search in Google Scholar

54. Weng, C.H., Tsai, C.Z., Chu, S.H. & Sharma, Y.C. (2007). Adsorption characteristics of copper(II) onto spent activated clay. Sep. Purif. Technol. 54, 187–197. DOI: 10.1016/j.seppur.2006.09.009.10.1016/j.seppur.2006.09.009Search in Google Scholar

55. Li, Y., Liu, F., Xia, B., Du, Q., Zhang, P., Wang, D., Wang, Z. & Xia, Y. (2010). Removal of copper from aqueous solution by carbon nanotube/calcium alginate composites. J. Hazard. Mater. 177, 876–880. DOI: 10.1016/j.jhazmat.2009.12.114.10.1016/j.jhazmat.2009.12.11420083351Search in Google Scholar

eISSN:
1899-4741
Lingua:
Inglese
Frequenza di pubblicazione:
4 volte all'anno
Argomenti della rivista:
Industrial Chemistry, Biotechnology, Chemical Engineering, Process Engineering