INFORMAZIONI SU QUESTO ARTICOLO

Cita

1. Kotyczka-Morańska, M., Tomaszewicz, G. & Łabojko, G. (2012). Comparison of different methods for enhancing CO2 capture by CaO-based sorbents. Review. Physicochem. Probl. Miner. Process. 48, 77–90.Search in Google Scholar

2. Manovic, V. & Anthony, E. (2007). SO2 retention by reactivated CaO-based sorbent from multiple CO2 Capture Cycles. Environ. Sci. Technol. 41, 4435–4440. DOI: 10.1021/es0629458.10.1021/es0629458Search in Google Scholar

3. Li, Y., Zhao, Ch., Chen, H., Liang, C., Duan, L. & Zhou, W. (2009) Modified CaO-based sorbent looping cycle for CO2 mitigation. Fuel 88, 697–704. DOI: 10.1016/j.fuel.2008.09.018.10.1016/j.fuel.2008.09.018Search in Google Scholar

4. Manovic, V. & Anthony, E. (2010a). Sulfation Performance of CaO-Based Pellets Supported by Calcium Aluminate Cements Designed for High-Temperature CO2 Capture. Energy & Fuels 24, 1414–1420. DOI: 10.1021/ef900943h.10.1021/ef900943hSearch in Google Scholar

5. Adánez, J., de Diego, L. & Garcia-Labiano, F. (1999). Calcination of calcium acetate and calcium magnesium acetate: effect of the reacting atmosphere. Fuel, 78, 583–592. DOI: 10.1016/S0016-2361(98)00186-0.10.1016/S0016-2361(98)00186-0Search in Google Scholar

6. Nimmo, W., Patsias, A., Hampartsoumian, E., Gibbs, B., Fairweather, M. & Williams, P. (2004). Calcium magnesium acetate and urea advanced reburning for NO control with simultaneous SO2 reduction. Fuel 83, 1143–1150. DOI: 10.1016/j.fuel.2003.11.011.10.1016/j.fuel.2003.11.011Search in Google Scholar

7. Patsias, A., Nimmo, W., Gibbs, B. & Williams, P. (2005). Calcium-based sorbents for simultaneous NOx/SOx reduction in a down-fired furnace. Fuel 84, 1864–1873. DOI: 10.1016/j.fuel.2005.03.009.10.1016/j.fuel.2005.03.009Search in Google Scholar

8. Manovic, V. & Anthony, E. (2010b). CO2 Carrying behavior of calcium aluminate pellets under high-temperature/high-CO2 concentration calcination conditions. Ind. Eng. Chem. Res. 49, 6916–6922. DOI: 10.1021/ie901795e.10.1021/ie901795eSearch in Google Scholar

9. Manovic, V. & Anthony, E. (2008). Parametric Study on the CO2 Capture Capacity of CaO-Based Sorbents in Looping Cycles. Energy & Fuels 22, 1851–1857. DOI: 10.1021/ef800011z.10.1021/ef800011zSearch in Google Scholar

10. Bouquet, E., Leyssens, G., Schönnenbeck, C. & Gilot, P. (2009). The decrease of carbonation efficiency of CaO along calcination–carbonation cycles: Experiments and modelling. Chem. Eng. Sci. 64, 2136–2146. DOI: 10.1016/j.ces.2009.01.045.10.1016/j.ces.2009.01.045Search in Google Scholar

11. Hughes, R., Lu, D., Anthony, E. & Wu, Y. (2004). Improved long-term conversion of limestone-derived sorbents for in situ capture of CO2 in a fluidized bed combustor. Ind. Eng. Chem. Res. 43, 5529–5539. DOI: 10.1021/ie034260b.10.1021/ie034260bSearch in Google Scholar

12. Beruto, D., Barco, L. & Searcy, A. (1984). CO2-catalyzed surface area and porosity changes in high-surface-area CaO aggregates. J. Am. Ceram. Soc. 67, 512–516. DOI: 0.1111/j.1151-2916.1984.tb19644.x.10.1111/j.1151-2916.1984.tb19644.xSearch in Google Scholar

13. Butler, J., Lim, C. & Grace, J. (2014). Kinetics of CO2 absorption by CaO through pressure swing cycling. Fuel 127, 78–87. DOI: 10.1016/j.fuel.2013.09.058.10.1016/j.fuel.2013.09.058Search in Google Scholar

14. Oakeson, W. & Culter, I. (1979). Effect of CO2 pressure on the reaction with CaO. J. Am. Ceram. Soc. 62, 556–558. DOI: 10.1111/j.1151-2916.1979.tb12729.x.10.1111/j.1151-2916.1979.tb12729.xSearch in Google Scholar

15. Bhatia, S. & Perlmutter, D. (1983). Effect of the product layer on the kinetics on the CO2-lime Reaction. AIChE J. 29, 79–86. DOI: 10.1002/aic.690290111.10.1002/aic.690290111Search in Google Scholar

16. Lee, D. (2004). An apparent kinetic model for the carbonation of calcium oxide by carbon dioxide. Chem. Eng. J. 100, 71–77. DOI: 10.1016/j.cej.2003.12.003.10.1016/j.cej.2003.12.003Search in Google Scholar

17. Li, Z. & Cai, N. (2007). Modeling of multiple cycles for sorption-enhanced steam methane reforming and sorbent regeneration in fixed bed reactor. Energy & Fuels 21, 2909–2918. DOI: 10.1021/ef070112c.10.1021/ef070112cSearch in Google Scholar

18. Szekely, J. & Evans, J. (1970). Structural model for gas–solid reactions with a moving boundary. Chem. Eng. Sci. 25, 1091–1107. DOI: 10.1016/0009-2509(71)86033-5.10.1016/0009-2509(71)86033-5Search in Google Scholar

19. Johnsen, K., Grace, J., Elnashaie, S., Kolbeinsen, L. & Eriksen, D. (2006). Modelling of sorption-enhanced steam reforming in a dual fluidized bubbling bed reactor. Ind. Eng. Chem. Res. 45, 4133–4144. DOI: 10.1021/ie0511736.10.1021/ie0511736Search in Google Scholar

20. Bhatia, S. & Perlmutter, D. (1980). A random pore model for fluid–solid reactions: I. Isothermal, kinetic control. AIChE J. 26, 379–386. DOI: 10.1002/aic.690260308.10.1002/aic.690260308Search in Google Scholar

21. Bhatia, S. & Perlmutter, D. (1981). A random pore model for fluid–solid reactions: II. Diffusion and transport effects. AIChE J. 27, 247–254. DOI: 10.1002/aic.690270211.10.1002/aic.690270211Search in Google Scholar

22. Grasa, G., Murillo, R., Alonso, M. & Abanades, J. (2009). Application of the random pore model to the carbonation cyclic reaction. AIChE J. 55, 1246–1255. DOI: 0.1002/aic.11746.10.1002/aic.11746Search in Google Scholar

23. Liu, W., Dennis, J. Sultan, D. Redfern, S. & Scott, S. (2012). An investigation of the kinetics of CO2 uptake by a synthetic calcium based sorbent. Chem. Eng. Sci. 69, 644–658. DOI: 10.1016/j.ces.2011.11.036.10.1016/j.ces.2011.11.036Search in Google Scholar

24. Yu, Y., Liu, W., An, H., Yang, F., Wang, G., Feng, B., Zhang, Z. & Rudolph, V. (2012). Modeling of the carbonation behavior of a calcium based sorbent for CO2 capture. Int. J. Greenhouse Gas Cont. 10; 510–519. DOI: 10.1016/j.ijggc.2012.07.016.10.1016/j.ijggc.2012.07.016Search in Google Scholar

25. Chen, H., Zhao, Ch., Li, Y. & Chen, X. (2010). CO2 Capture Performance of Calcium-Based Sorbents in a Pressurized Carbonation/Calcination Loop. Energy Fuels 24, 5751–5756. DOI: 10.1021/ef100565d.10.1021/ef100565dSearch in Google Scholar

26. Baker, E.H. (1962). The calcium oxide-carbon dioxide system in the pressure range 1–300 atmospheres. J. Chem. Soc. (464–470). DOI: 10.1039/JR9620000464.10.1039/JR9620000464Search in Google Scholar

27. Szekely, J., Evans, J.W. & Sohn, H.Y. Gas-solid reactions. Academic Press, New York (1976).Search in Google Scholar

28. Levenspiel, O. (1972) Chemical Reaction Engineering. Third ed. Wiley, New York.Search in Google Scholar

29. Yagi, S. & Kunii, D. (1955) Studies on combustion of carbon particles in flames and fluidized beds, Proceedings of 5th (int.) Symbosium on Combustion, Reinhold, New York, 231.Search in Google Scholar

30. Zhou, Z., Xu, P., Xie, M., Cheng, Z. & Yuan, W. (2013). Modeling of the carbonation kinetics of a synthetic CaObased sorbent. Chem. Eng. Sci. 95, 283–290. DOI: 10.1016/j.ces.2013.03.047.10.1016/j.ces.2013.03.047Search in Google Scholar

eISSN:
1899-4741
Lingua:
Inglese
Frequenza di pubblicazione:
4 volte all'anno
Argomenti della rivista:
Industrial Chemistry, Biotechnology, Chemical Engineering, Process Engineering