Accesso libero

The Development of Nanotechnologies and Advanced Materials Industry in Science and Entrepreneurship: Socioeconomic and Technical Indicators. A Case Study of Latvia (Part Two)

INFORMAZIONI SU QUESTO ARTICOLO

Cita

1. Realo, A., & Dobewall, H. (2011). Does life satisfaction change with age? A comparison of Estonia, Finland, Latvia, and Sweden. Journal of Research in Personality, 45 (3), 297–308. DOI: 10.1016/j.jrp.2011.03.00410.1016/j.jrp.2011.03.004Search in Google Scholar

2. Veenhoven, R. (n.d.). Happiness in Latvia (LV), World Database of Happiness, Erasmus University Rotterdam. The Netherlands. Retrieved 14 January 2016, from http://worlddatabaseofhappiness.eur.nlSearch in Google Scholar

3. Better life index. (n.d.). OECD. Retrieved 6 January 2016, from http://www.oecdbetterlifeindex.org/topics/life-satisfaction/Search in Google Scholar

4. Lonska, J. (2013). Comparative analysis of subjective well-being of Latvia’s inhabitants in the context of economic development of the Baltic States. Latgale National Economy Research, 1 (5), 148–166. DOI: 10.17770/lner2013vol1.5.1157.10.17770/lner2013vol1.5.1157Search in Google Scholar

5. Living standard statistics – median equivalised disposable income. (n.d.). Eurostat. Retrieved 6 January 2016, from http://ec.europa.eu/eurostat/statistics-explained/index.php/Living_standard_statistics_-_median_equivalised_disposable_incomeSearch in Google Scholar

6. Gini coefficient of equivalised disposable income. (n.d.). Eurostat. Retrieved 11 January 2016, from http://ec.europa.eu/eurostat/tgm/table.do?tab=table&language=en&pcode=tessi190Search in Google Scholar

7. World Rankings – Human Development Index. (n.d.). World Data Atlas. Retrieved 10 November 2015, from http://knoema.com/atlas/topics/World-Rankings/World-Rankings/Human-Development-IndexSearch in Google Scholar

8. GNI per capita, Atlas method (current US$). (n.d.). The World Bank. Retrieved 10 November 2015, from http://data.worldbank.org/indicator/NY.GNP.PCAP.CD/countries?order=wbapi_data_value_2014%20wbapi_data_value%20wbapi_data_value-last&sort=asc&display=defaultSearch in Google Scholar

9. Geipele, I., Geipele, S., Staube, T., Ciemleja, G., Zeltins, N., & Ekmanis, J. (2016). The development of nanotechnologies and advanced materials industry in science and entrepreneurship: Socioeconomic and technical indicators. A case study of Latvia (Part One). Latvian Journal of Physics and Technical Sciences (53), 4, 3–13, DOI: 10.1515/lpts-2016-0023.10.1515/lpts-2016-0023Search in Google Scholar

10. Employment (main characteristics and rates) – Annual averages. (n.d.). Eurostat. Retrieved 19 December 2015, from http://appsso.eurostat.ec.europa.eu/nui/submitViewTableAction.doSearch in Google Scholar

11. Economically active population by education level and gender on a quarterly basis. (n.d.). Central Statistical Bureau of Latvia. Retrieved 10 November 2015, from http://data.csb.gov.lv/pxweb/lv/Sociala/Sociala__isterm__nodarb/NB0030c.px/table/tableViewLayout1/?rxid=d543db7b-f122-4e1f-aced-7a7707fd86e7 (in Latvian)Search in Google Scholar

12. Researchers in R&D (per million people). (n.d.). The World Bank. Retrieved 5 January 2016, from http://data.worldbank.org/indicator/SP.POP.SCIE.RD.P6?order=wbapi_data_value_2013+wbapi_data_value&sort=ascSearch in Google Scholar

13. Unemployment rate by sex and age groups – Annual average, %. (n.d.). Eurostat. Retrieved 10 January 2016, from http://appsso.eurostat.ec.europa.eu/nui/show.do?wai=true&dataset=une_rt_aSearch in Google Scholar

14. The Number of employed and unemployed aged 15–74 years by gender on a monthly basis, seasonally adjusted data. (n.d.). Central Statistical Bureau of Latvia. Retrieved 10 January 2016, from http://data.csb.gov.lv/pxweb/lv/Sociala/Sociala__isterm__nodarb/NB00010m.px/table/tableViewLayout1/?rxid=d543db7b-f122-4e1f-aced-7a7707fd86e7 (in Latvian).Search in Google Scholar

15. Latvia – Population. (n.d.). Country Economy. Retrieved 13 November 2015, from http://countryeconomy.com/demography/population/latviaSearch in Google Scholar

16. Bainbridge, W. S. (Ed.). (2007). Nanotechnology: Societal implications: I: Maximising benefits for humanity; II: Individual perspectives. Springer Science & Business Media. Netherlands.Search in Google Scholar

17. The unemployed by sex and educational level on a quarterly basis (n.d.). Central Statistical Bureau of Latvia. Retrieved 10 January 2016, from http://data.csb.gov.lv/pxweb/lv/Sociala/Sociala__isterm__nodarb/NB0200c.px/table/tableViewLayout1/?rxid=d543db7b-f122-4e1f-aced-7a7707fd86e7 (in Latvian).Search in Google Scholar

18. Statistical portrait of unemployed person. (2015). State Employment Agency. Retrieved 10 January 2016, from http://nva.gov.lv/index.php?cid=6&mid=494&txt=495&t=stat (in Latvian).Search in Google Scholar

19. About development of smart specialisation strategy (2013). Ministry of Education and Science of Latvia. Retrieved 13 January 2016, from http://tap.mk.gov.lv/mk/tap/?pid=40291636 (in Latvian).Search in Google Scholar

20. File:Expenditure on social protection, 2002–12 (% of GDP) YB15.png. Eurostat Statistics Explained. Retrieved 13 January 2016, from http://ec.europa.eu/eurostat/statistics-explained/index.php/File:Expenditure_on_social_protection,_2002%E2%80%9312_%28%25_of_GDP%29_YB15.pngSearch in Google Scholar

21. Average monthly salary by activity types / per month (EUR). (n.d.). Central Statistical Bureau of Latvia. Retrieved 14 January 2016, from http://data.csb.gov.lv/pxweb/lv/Sociala/Sociala__isterm__dsamaksa/DS0040m_euro.px/table/tableViewLayout1/?rxid=89fa53c2-5ff7-456f-aae4-c4274cf3b2aa (in Latvian).Search in Google Scholar

22. Salary survey in Germany, Lithuania and Poland. (n.d.). Salary Explorer 2015. Retrieved 14 January 2016, from http://www.salaryexplorer.com/salary-survey.php?loc=81&loctype=1Search in Google Scholar

23. Nanotechnology Careers. (n.d.). National Nanotechnology Infrastructure Network. Retrieved 9 January 2016, from http://www.nnin.org/news-events/spotlights/nanotechnology-careersSearch in Google Scholar

24. Science, Technology Development and Innovation Guidelines for 2014–2020. Riga, 2013, Regulations of the Cabinet of Ministers No. 685 as of 28 December 2013. Retrieved 5 January 2016, from https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=3&ved=0CCwQFjACahUKEwjKz-6H8JnIAhXIjSwKHR6JDDo&url=http%3A%2F%2Fwww.innovativelatvia.lv%2Ffiles%2Finov%2Fcontent%2FZinatnes_tehnologijas_attistibas_un_inovacijas_pamatnostadnes_2014.%2520%25E2%2580%2593%25202020.gadam_.doc&usg=AFQjCNHBPccjrOxlMiOlbZKAYbPQt-i4rA&sig2=ck17B0cnEsUJlhtzYGWG7g&cad=rja (in Latvian)Search in Google Scholar

25. Nanotechnology patents in EPO (Patent). (n.d.). StatNano. Retrieved 15 December 2015, from http://statnano.com/report/s95Search in Google Scholar

26. Nanotechnology patents in USPTO (Patent). (n.d.). StatNano. Retrieved 15 December 2015, from http://statnano.com/report/s89Search in Google Scholar

27. Nanotechnology patents in German patent office (DPMA) (Patent). (n.d.). StatNano. Retrieved 15 December 2015, from http://statnano.com/report/s97Search in Google Scholar

28. Nanotechnology published patent applications in EPO (Patent). (n.d.). StatNano. Retrieved 15 December 2015, from http://statnano.com/report/s96Search in Google Scholar

29. Nanotechnology published patent applications in USPTO (Patent). (n.d.). StatNano. Retrieved 15 December 2015, from http://statnano.com/report/s78Search in Google Scholar

30. Nanotechnology published patent applications in German patent office (DPMA) (Patent). (n.d.). StatNano. Retrieved 15 December 2015, from http://statnano.com/report/s98Search in Google Scholar

31. Ratio of nanotechnology patents to nano-articles (Patents per 100 articles). (n.d.). Stat-Nano. Retrieved 20 December 2015, from http://statnano.com/report/s88Search in Google Scholar

32. Project BIRTI Science, Technology and Innovation Strategy for Smart Specialisation for 2014–2020. Riga, 2013. Association “Baltic Institute of Research, Technology and Innovation” (BIRTI). Retrieved 14 January 2016, from https://www.google.lv/?gws_rd=ssl#q=Projekts+BIRTI+Zin%C4%81tnes%2C+tehnolo%C4%A3iju+un+inov%C4%81cijas+strat%C4%93%C4%A3ija+lietprat%C4%ABgai+specializ%C4%81cijai+2014.-2020.gadam (in Latvian)Search in Google Scholar

33. Staube, T., Ciemleja, G., & Geipele, I. (2014). The origins of nanotechnology in Latvia. Advanced Materials Research, 1025–1026, 1083–1087. DOI: 10.4028/www.scientific.net/AMR.1025-1026.1083.10.4028/www.scientific.net/AMR.1025-1026.1083Search in Google Scholar

34. Ekmanis, J., Gavars, V., Mikelsons, K., Tomsons, E., & Zeltins, N. (2010). Development of nuclear energetics in Latvia. In the 21st World Energy Congress, 12–16 September 2010 (16 pp.). Montreal, Canada: World Energy Council. Retrieved from http://www.indiaenergycongress.in/montreal/library/pdf/18.pdfSearch in Google Scholar

35. NanoTechEnergy. (n.d.). Association “Baltic Institute of Research, Technology and Innovation” (BIRTI). Retrieved 20 January 2016, from http://www.birti.eu/en/what-we-do/item/81-nanotechenergySearch in Google Scholar

36. Ventspils High Technology Park (2012). Strategy of Space Technology and Services Cluster 2012-2015. Retrieved 20 January 2016, from http://www.vatp.lv/ (in Latvian)Search in Google Scholar

37. Cluster Project. (n.d.). Association of Mechanical Engineering and Metalworking Industries. Retrieved 24 January 2016, from http://www.masoc.lv/aktivitates/projekti/klastera-projekts (in Latvian).Search in Google Scholar

38. Thangavel, S., Thangavel, S., Raghavan, N., Krishnamoorthy, K., & Venugopal, G. (2016). Visible-light driven photocatalytic degradation of methylene-violet by rGO/Fe3O4/ZnO ternary nanohybrid structures. Journal of Alloys and Compounds, 665, 107–112. DOI: 10.1016/j.jallcom.2015.12.19210.1016/j.jallcom.2015.12.192Search in Google Scholar

39. Badran, H. A., Ajeel, K. I., & Lazim, H. G. (2016). Effect of nano particle sizes on the third-order optical non-linearities and nanostructure of copolymer P3HT:PCBM thin film for organic photovoltaics. Materials Research Bulletin, 76, 422–430. DOI: 10.1016/j.materresbull.2016.01.00510.1016/j.materresbull.2016.01.005Search in Google Scholar

40. Stodola, P., Jamrichova, Z., & Stodola, J. (2012). Modelling of erosion effects on coatings of military vehicle components. Transactions of FAMENA, 36 (3), 33–44.Search in Google Scholar

41. Wolden, C. A., Abbas, A., Li, J., Diercks, D. R., Meysing, D. M., Ohno, T. R., et al. (2016). The roles of ZnTe buffer layers on CdTe solar cell performance. Solar Energy Materials and Solar Cells, 147, 203–210. DOI: 10.1016/j.solmat.2015.12.019.10.1016/j.solmat.2015.12.019Search in Google Scholar

42. Zhang, X., Tang, Z., Hu, D., Meng, D., & Jia, S. (2016). Nanoscale p–n junctions based on p-type ZnSe nanowires and their optoelectronic applications. Materials Letters, 168, 121–124. DOI: 10.1016/j.matlet.2016.01.044.10.1016/j.matlet.2016.01.044Search in Google Scholar

43. Martínez, I. A., Roldán, É., Dinis, L., Petrov, D., Parrondo, J. M. R., & Rica, R. A. (2015). Brownian Carnot engine. Nature Physics, 12 (1), 67–70. DOI: 10.1038/nphys3518.10.1038/nphys3518490735327330541Search in Google Scholar

44. Yardimci, N.T., & Jarrahi, M. (2015). 3.8 mW terahertz radiation generation through plasmonic nano-antenna arrays. In 2015 IEEE Int. Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, 19–24 July 2015 (pp. 2113–2114). Vancouver, Canada: IEEE. DOI: 10.1109/APS.2015.7305446.10.1109/APS.2015.7305446Search in Google Scholar

eISSN:
0868-8257
Lingua:
Inglese
Frequenza di pubblicazione:
6 volte all'anno
Argomenti della rivista:
Physics, Technical and Applied Physics