INFORMAZIONI SU QUESTO ARTICOLO

Cita

1. Zachwieja, U., and Jacobs, H. (1990). Ammonothermalsynthese von kupfernitrid, Cu3N. J. Less Common Metals 161, 175–184. DOI: 10.1016/0022-5088(90)90327-G.10.1016/0022-5088(90)90327-GSearch in Google Scholar

2. Paniconi, G., Stoeva, Z., Doberstein, H., Smith, R. I., Gallagher, B. L., and Gregory, D.H. (2007). Structural chemistry of Cu3N powders obtained by ammonolysis reactions. Solid State Sci. 9, 907–913. DOI: 10.1016/j.solidstatesciences.2007.03.017.10.1016/j.solidstatesciences.2007.03.017Search in Google Scholar

3. Asano, M., Umeda, K., and Tasaki, A. (1990). Cu3N thin film for a new light recording media. Jpn. J. Appl. Phys. 29, 1985–1986. DOI: 10.1143/JJAP.29.1985.10.1143/JJAP.29.1985Search in Google Scholar

4. Maruyama, T., and Morishita, T. (1996). Copper nitride and tin nitride thin films for write-once optical recording media. Appl. Phys. Lett. 69, 890–891. DOI: 10.1063/1.117978.10.1063/1.117978Search in Google Scholar

5. Borsa, D.M., Grachev, S., Presura, C., and Boerma, D.O. (2002). Growth and properties of Cu3N films and Cu3N/γ’-Fe4N bilayers. Appl. Phys. Lett. 80, 1823–1825. DOI: 10.1063/1.1459116.10.1063/1.1459116Search in Google Scholar

6. Wu, H., and Chen, W. (2011). Copper nitride nanocubes: size-controlled synthesis and application as cathode catalyst in alkaline fuel cells. J. Am. Chem. Soc. 133, 15236–15239. DOI: 10.1021/ja204748u.10.1021/ja204748uSearch in Google Scholar

7. Maya, L. (1993). Deposition of crystalline binary nitride films of tin, copper, and nickel by reactive sputtering. J. Vac. Sci. Technol. A 11, 604–608. DOI: 10.1116/1.578778.10.1116/1.578778Search in Google Scholar

8. Borsa, D.M., and Boerma, D.O. (2004). Growth, structural and optical properties of Cu3N films. Surf. Sci. 548, 95–105. DOI: 10.1016/j.susc.2003.10.053.10.1016/j.susc.2003.10.053Search in Google Scholar

9. Zakutayev, A., Caskey, Ch.M., Fioretti, A.N., Ginley, D.S., Vidal, J., Stevanovic, V., Tea, E., and Lany, S. (2014). Defect tolerant semiconductors for solar energy conversion. J. Phys. Chem. Lett. 5, 1117–1125. DOI: 10.1021/jz5001787.10.1021/jz5001787Search in Google Scholar

10. Caskey, Ch. M., Richards, R.M., Ginleya, D.S., and Zakutayev, A. (2014). Thin film synthesis and properties of copper nitride, a metastable semiconductor. Mater. Horiz. 1, 424–430. DOI: 10.1039/c4mh00049h.10.1039/C4MH00049HSearch in Google Scholar

11. Pierson, J.F. (2002). Structure and properties of copper nitride films formed by reactive magnetron sputtering. Vacuum 66, 59–64. DOI: 10.1016/S0042-207X(01)00425-0.10.1016/S0042-207X(01)00425-0Search in Google Scholar

12. Maruyama, T., and Morishita, T. (1995). Copper nitride thin films prepared by radio-frequency reactive sputtering. J. Appl. Phys. 78, 4104–4107. DOI: 10.1063/1.359868.10.1063/1.359868Search in Google Scholar

13. Hahn, U., and Weber, W. (1996). Electronic structure and chemical-bonding mechanism of Cu3N, Cu3NPd, and related Cu(I) compounds. Phys. Rev. B 53, 12684. DOI: 10.1103/PhysRevB.53.12684.10.1103/PhysRevB.53.12684Search in Google Scholar

14. Moreno-Armenta, M.G., Martínez-Ruiz, A., and Takeuchi, N. (2004). Ab initio total energy calculations of copper nitride: The effect of lattice parameters and Cu content in the electronic properties. Solid State Sci. 6, 9–14. DOI: 10.1016/j.solidstatesciences.2003.10.014.10.1016/j.solidstatesciences.2003.10.014Search in Google Scholar

15. Hou, Z.F. (2008). Effects of Cu, N, and Li intercalation on the structural stability and electronic structure of cubic Cu3N. Solid State Sci. 10, 1651–1657. DOI: 10.1016/j.solidstatesciences.2008.02.013.10.1016/j.solidstatesciences.2008.02.013Search in Google Scholar

16. Zhao, J.G., Yang, L.X., and Yu, Y., (2006). Pressure-induced metallization and structural evolution of Cu3N. Phys. Stat. Sol. (b) 243, 573–578. DOI: 10.1002/pssb.200541280.10.1002/pssb.200541280Search in Google Scholar

17. Wosylus, A., Schwarz, U., Akselrud, L., Tucker, M.G., Hanfland, M., Rabia, K., Kuntscher, C., von Appen, J., Dronskowski, R., Rau, D., and Niewa, R. (2009). High-pressure phase transition and properties of Cu3N: An experimental and theoretical study. Z. Anorg. Allg. Chem. 635, 1959–1968. DOI: 10.1002/zaac.200900369.10.1002/zaac.200900369Search in Google Scholar

18. Rickers, K., Drube, W., Schulte-Schrepping, H., Welter, E., Brüggmann, U., Herrmann, M., Heuer, J., and Schulz-Ritter, H. (2007). New XAFS Facility for In-Situ Measurements at Beamline C at HASYLAB. AIP Conf. Proc. 882, 905–907. DOI: 10.1063/1.264470010.1063/1.2644700Search in Google Scholar

19. Kuzmin, A. (1995). EDA: EXAFS data analysis software package. Physica B 208-209, 175–176. DOI: 10.1016/0921-4526(94)00663-G.10.1016/0921-4526(94)00663-GSearch in Google Scholar

20. Aksenov, V.L., Kuzmin, A. Yu., Purans, J., and Tyutyunnikov, S.I. (2006). Development of Methods of EXAFS Spectroscopy on Synchrotron Radiation Beams: Review. Crystallogr. Rep. 51, 908–935. DOI: 10.1134/S1063774506060022.10.1134/S1063774506060022Search in Google Scholar

21. Kuzmin, A., and Chaboy, J. (2014). EXAFS and XANES analysis of oxides at the nanoscale. IUCrJ 1, 571–589. DOI: 10.1107/S2052252514021101.10.1107/S2052252514021101Search in Google Scholar

22. Ankudinov, A.L., Ravel, B., Rehr, J.J., and Conradson, S.D. (1998). Real-space multiple-scattering calculation and interpretation of x-ray-absorption near-edge structure. Phys. Rev. B 58, 7565–7576. DOI: 10.1103/PhysRevB.58.7565.10.1103/PhysRevB.58.7565Search in Google Scholar

23. Rehr, J.J., and Albers, R.C. (2000). Theoretical approaches to x-ray absorption fine structure. Rev. Mod. Phys. 72, 621–654. DOI: 10.1103/RevModPhys.72.621.10.1103/RevModPhys.72.621Search in Google Scholar

24. Xiao, J., Li, Y., and Jiang, A. (2011). Structure, optical property and thermal stability of copper nitride films prepared by reactive radio frequency magnetron sputtering. J. Mater. Sci. Technol. 27, 403–407. DOI: 10.1016/S1005-0302(11)60082-0.10.1016/S1005-0302(11)60082-0Search in Google Scholar

25. Yue, G.H., Yana, P.X., and Wang, J. (2005). Study on the preparation and properties of copper nitride thin films. J. Crystal Growth 274, 464–468. DOI: 10.1016/j.jcrysgro.2004.10.032.10.1016/j.jcrysgro.2004.10.032Search in Google Scholar

26. Kuzmin, A., and Purans, J. (1993). A new fast spherical approximation for calculation of multiple scattering contribution in the X-ray absorption fine structure and its application to ReO3, NaWO3 and MoO3. J. Phys.: Condensed Matter 5, 267–282. DOI: 10.1088/0953-8984/5/3/004.10.1088/0953-8984/5/3/004Search in Google Scholar

27. Anspoks, A., Kalinko, A., Kalendarev, R., and Kuzmin, A. (2012). Atomic structure relaxation in nanocrystalline NiO studied by EXAFS spectroscopy: Role of nickel vacancies. Phys. Rev. B 86, 174114, 1–11. DOI: 10.1103/PhysRevB.86.174114.10.1103/PhysRevB.86.174114Search in Google Scholar

eISSN:
0868-8257
Lingua:
Inglese
Frequenza di pubblicazione:
6 volte all'anno
Argomenti della rivista:
Physics, Technical and Applied Physics