Accesso libero

Eff ect of a single asenapine treatment on Fos expression in the brain catecholamine-synthesizing neurons: impact of a chronic mild stress preconditioning

INFORMAZIONI SU QUESTO ARTICOLO

Cita

Asmus SE, Newman SW. Colocalization of tyrosine hydroxylase and Fos in the male Syrian hamster brain following diff erent states of arousal. J Neurobiol 25, 156-168, 1994.10.1002/neu.480250207Search in Google Scholar

Berridge CW, Waterhouse BD. Th e locus coeruleus-noradrenergic system: modulation of behavioral state and statedependent cognitive processes. Brain Res Rev 42, 33-84, 2003.10.1016/S0165-0173(03)00143-7Search in Google Scholar

Bjorklund A, Nobin A. Fluorescence histochemical and microspectrofl uorometric mapping of dopamine and noradrenaline cell groups in the rat diencephalon. Brain Res 51, 193-205, 1973.10.1016/0006-8993(73)90372-7Search in Google Scholar

Blessing WW, Hedger SC, Joh TH, Willoughby JO. Neurons in the area postrema are the only catecholamine-synthesizing cells in the medulla or pons with projections to the rostral ventrolateral medulla (C1-area) in the rabbit. Brain Res 419, 336-340, 1987.10.1016/0006-8993(87)90604-4Search in Google Scholar

Bontempi B, Sharp FR. Systemic morphine-induced Fos protein in the rat striatum and nucleus accumbens is regulated by m opioid receptors in the substantia nigra and ventral tegmental area. J Neurosci 17, 8596-8612, 1997.10.1523/JNEUROSCI.17-21-08596.1997Search in Google Scholar

Burns RS, Chiueh CC, Markey SP, Ebert MH, Jacobowitz DM, Kopin IJ. Primate model of parkinsonism: Selective destruction of dopaminergic neurons in the pars compacta of the substantia nigra by N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. Proc Natl Acad Sci USA 80, 4546-4550, 1983.10.1073/pnas.80.14.4546Search in Google Scholar

Ceccatelli S, Villar MJ, Goldstein M, Hokfelt T. Expression of c-Fos immunoreactivity in transmitter-characterized neurons aft er stress (corticotropin-releasing factor/catecholamine neurons/paraventricular nucleus/medulla oblongata/colchicine). Proc Natl Acad Sci USA 86, 9569-9573, 1989.10.1073/pnas.86.23.9569Search in Google Scholar

Chan JYH, Tsou MY, Len WB, Lee TY, Chan SHH. Participation of noradrenergic neurotransmission in the enhancement of baroreceptor refl ex response by substance P at the nucleus tractus solitarii of the rat: A reverse microdialysis study. J Neurochem 64, 2644-2652, 1995.10.1046/j.1471-4159.1995.64062644.xSearch in Google Scholar

Chinta SJ, Andersen JK. Dopaminergic neurons. Int J Biochem Cell Biol 37, 942-946, 2005.10.1016/j.biocel.2004.09.009Search in Google Scholar

Dahlstrom A, Fuxe K. Existence of monoamine-containing neurons in the central nervous system. I. Demonstration of monoamines in the cell bodies of brain stem neurons. Acta Physiol Scand Suppl 4, 232, 1-55, 1964.Search in Google Scholar

Dawe GS, Huff KD, Vandergriff JL, Sharp T, O’Neill MJ, Rasmussen K. Olanzapine activates the rat locus coeruleus: in vivo electrophysiology and c-Fos immunoreactivity. Biol Psychiatry 50, 510-520, 2001.10.1016/S0006-3223(01)01171-4Search in Google Scholar

Deutch AY, Tam SY, Roth RH. Footshock and conditioned stress increase 3,4-dihydroxyphenylacetic acid (DOPAC) in the ventral tegmental area but not substantia nigra. Brain Res 333, 143-146, 1985.10.1016/0006-8993(85)90134-9Search in Google Scholar

Deutch AY, Lee MC, Gillham MH, Cameron DA, Goldstein M, Iadarola MJ. Stress selectively increases fos protein in dopamine neurons innervating the prefrontal cortex. Cereb Cortex 1, 273-292, 1991.10.1093/cercor/1.4.273Search in Google Scholar

Dragunow M, Faull R. Th e use of c-fos as a metabolic marker in neuronal pathway tracing. J Neurosci Methods 29, 261-265, 1989.10.1016/0165-0270(89)90150-7Search in Google Scholar

Greenberg GD, Steinman MQ, Doig IE, Hao R, Trainor BC. Eff ects of social defeat on dopamine neurons in the ventral tegmental area in male and female California mice. Eur J Neurosci 42, 3081-3094, 2015.10.1111/ejn.13099Search in Google Scholar

Groger A, Kolb R, Schafer R, Klose U. Dopamine reduction in the substantia nigra of Parkinson’s disease patients confi rmed by in vivo magnetic resonance spectroscopic imaging. PLoS ONE 9, e84081, 2014.10.1371/journal.pone.0084081Search in Google Scholar

Guyenet PG, Koshiya N, Huangfu D, Verberne AJ, Riley TA. Central respiratory control of A5 and A6 pontine noradrenergic neurons. Am J Physiol 264, R1035-R1044, 1993.10.1152/ajpregu.1993.264.6.R1035Search in Google Scholar

Guyenet PG, Koshiya N, Huangfu D, Baraban SC, Stornetta RL, Li YW. Role of medulla oblongata in generation of sympathetic and vagal outfl ows. Prog Brain Res 107,127-144, 1996.10.1016/S0079-6123(08)61862-2Search in Google Scholar

Hui AS, Striet JB, Gudelsky G, Soukhova GK, Gozal E, Beitner-Johnson D, Guo SZ, Sachleben LR Jr, Haycock JW, Gozal D, Czyzyk-Krzeska MF. Regulation of catecholamines by sustained and intermittent hypoxia in neuroendocrine cells and sympathetic neurons. Hypertension 42, 1130-1136, 2003.10.1161/01.HYP.0000101691.12358.2614597643Search in Google Scholar

Hokfelt T, Johansson O, Fuxe K, Goldstein M, Park D. Immunohistochemical studies on the localization and distribution of monoamine neuron systems in the rat brain. I. Tyrosine hydroxylase in the mes- and diencephalon. Med Biol 54, 427-453, 1976.Search in Google Scholar

Horsburgh A, Massoud TF. Th e circumventricular organs of the brain: conspicuity on clinical 3T MRI and a review of functional anatomy. Surg Radiol Anat 35, 343-349, 2013.10.1007/s00276-012-1048-223247732Search in Google Scholar

Kvetnansky R, Sabban EL, Palkovits M. Catecholaminergic systems in stress: structural and molecular genetic approaches. Physiol Rev 89, 535-606, 2009.10.1152/physrev.00042.200619342614Search in Google Scholar

Kobayashi K. Role of catecholamine signaling in brain and nervous system functions: new insights from mouse molecular genetic study. J Investig Dermatol Symp Proc 6, 115-121, 2001.10.1046/j.0022-202x.2001.00011.xSearch in Google Scholar

Lee CR, Tepper JM. Basal ganglia control of substantia nigra dopaminergic neurons. J Neural Transm Suppl 73, 71-90, 2009.10.1007/978-3-211-92660-4_6Search in Google Scholar

Lindvall O, Bjorklund A. Dopamine- and Norepinephrine-Containing Neuron Systems: Th eir Anatomy in the Rat Brain. In: Emson PC (Ed), Chemical Neuroanatomy, Raven Press, New York, 229-256, 1983.Search in Google Scholar

Linner L, Wiker C, Wadenberg ML, Schalling M, Svensson TH. Noradrenaline reuptake inhibition enhances the antipsychotic-like eff ect of raclopride and potentiates D2-blockage-induced dopamine release in the medial prefrontal cortex of the rat. Neuropsychopharmacology 27, 691-698, 2002.10.1016/S0893-133X(02)00350-0Search in Google Scholar

MacInnes JJ, Dickerson KC, Chen N, Adcock RA. Cognitive neurostimulation: learning to volitionally sustain ventral tegmental area activation. Neuron 89, 1331-1342, 2016.10.1016/j.neuron.2016.02.002Search in Google Scholar

Majercikova Z, van Weering H, Scsukova S, Mikkelsen JD, Kiss A. A new approach of light microscopic immunohistochemical triple-staining: combination of Fos labeling with diaminobenzidine-nickel and neuropeptides labeled with Alexa488 and Alexa555 fl uorescent dyes. Endocr Regul 46, 217-223, 2012.10.4149/endo_2012_04_217Search in Google Scholar

Majercikova Z, Cernackova A, Horvathova L, Osacka J, Pecenak J, Kiss A. Eff ect of acute asenapine treatment on Fos expression in frontal brain structures under normal conditions and mild stress preconditioning in rat. Brain Res Bull 108, 60-66, 2014.10.1016/j.brainresbull.2014.08.006Search in Google Scholar

Majercikova Z, Kiss A. Stress alters asenapine-induced Fos expression in the Meynert’s nucleus: response of adjacent hypocretin and melanin-concentrating hormone neurons in rat. Neurol Res 38, 32-39, 2016.10.1080/01616412.2015.1105585Search in Google Scholar

Morgan JI, Curran T. Stimulus-transcription coupling in the nervous system: involvement of the inducible protooncogenes fos and jun. Annu Rev Neurosci 14, 421-451, 1991.10.1146/annurev.ne.14.030191.002225Search in Google Scholar

Moriizumi T, Leduc-Cross B, Wu JY, Hattori T. Separate neuronal populations of the rat substantia nigra pars lateralis with distinct projection sites and transmitter phenotypes. Neuroscience 46, 711-720, 1992.10.1016/0306-4522(92)90157-WSearch in Google Scholar

Nikulina EM, Covington HE 3rd, Ganschow L, Hammer RP Jr, Miczek KA. Long-term behavioral and neuronal cross-sensitization to amphetamine induced by repeated brief social defeat stress: Fos in the ventral tegmental area and amygdala. Neuroscience 123, 857-865, 2004.10.1016/j.neuroscience.2003.10.02914751279Search in Google Scholar

Nilsson LK, Schwieler L, Engberg G, Linderholm KR, Erhardt S. Activation of noradrenergic locus coeruleus neurons by clozapine and haloperidol: involvement of glutamatergic mechanisms. Int J Neuropsychopharmacol 8, 329-339, 2005.10.1017/S1461145705005080Search in Google Scholar

Ohashi K, Hamamura T, Lee Y, Fujiwara Y, Suzuki H, Kuroda S. Clozapine- and olanzapine-induced Fos expression in the rat medial prefrontal cortex is mediated by β-adrenoceptors. Neuropsychopharmacology 23, 162-169, 2000.10.1016/S0893-133X(00)00105-6Search in Google Scholar

Ossenkopp KP, Eckel LA. Toxin-induced conditioned changes in taste reactivity and the role of the chemosensitive area postrema. Neurosci Biobehav Rev 19, 99-108, 1995.10.1016/0149-7634(94)00024-USearch in Google Scholar

Pacak K, Palkovits M. Stressor specifi city of central neuroendocrine responses: implications for stress-related disorders. Endocr Rev 22, 502-548, 2001.10.1210/er.22.4.502Search in Google Scholar

Paxinos G, Watson C. Th e Rat Brain in Stereotaxic coordinates, compact 6th ed. Academic Press, Sydney 2007.Search in Google Scholar

Ranaldi R. Dopamine and reward seeking: the role of ventral tegmental area. Rev Neurosci 25, 621-630, 2014.10.1515/revneuro-2014-001924887956Search in Google Scholar

Samuels ER, Szabadi E. Functional neuroanatomy of the noradrenergic locus coeruleus: Its roles in the regulation of arousal and autonomic function part II: Physiological and pharmacological manipulations and pathological alterations of locus coeruleus activity in humans. Cur Neuropharmacol 6, 254-285, 2008.10.2174/157015908785777193268793119506724Search in Google Scholar

Santos CA, Andersen ML, Lima MMS, Tufi k S. Gentle handling temporarily increases c-Fos in the substantia nigra pars compacta. Braz J Med Biol Res 41, 920-925, 2008.10.1590/S0100-879X200800500004419037527Search in Google Scholar

Swanson LW, Hartman BK. Th e central adrenergic system. An immunofl uorescence study of the location of cell bodies and their eff erent connections in the rat utilizing dopamine-beta-hydroxylase as a marker. J Comp Neurol 163, 467-505, 1975.10.1002/cne.9016304061100685Search in Google Scholar

Thor KB, Helke CJ. Catecholamine-synthesizing neuronal projections to the nucleus tractus solitarii of the rat. J Comp Neurol 268, 264-280, 1988.10.1002/cne.9026802103360988Search in Google Scholar

Ungerstedt U. Stereotaxic mapping of the monoamine pathways in the rat brain. Acta Physiologica 82, 1-48, 1971.10.1111/j.1365-201X.1971.tb10998.xSearch in Google Scholar

Westerink BH, Kawahara Y, De Boer P, Geels C, De Vries JB, Wikstrom HV, Van Kalkeren A, Van Vliet B, Kruse CG, Long SK. Antipsychotic drugs classifi ed by their eff ects on the release of dopamine and noradrenaline in the prefrontal cortex and striatum. Eur J Pharmacol 412, 127-138, 2001.10.1016/S0014-2999(00)00935-3Search in Google Scholar

Westlund KN, Coulter JD. Descending projections of the locus coeruleus and subcoeruleus/medial parabrachial nuclei in monkey: axonal transport studies and dopamine-beta-hydroxylase immunocytochemistry. Brain Res 2, 235-264, 1980.10.1016/0165-0173(80)90009-0Search in Google Scholar

Williams CL, Men D, Clayton EC. Th e eff ects of noradrenergic activation of the nucleus tractus solitarius on memory and in potentiating norepinephrine release in the amygdala. Behav Neurosci 114, 1131-1144, 2000.10.1037/0735-7044.114.6.1131Search in Google Scholar

Wirtshafter D, Asin K. Dopamine antagonists induce Fos-like-immunoreactivity in the substantia nigra and entopeduncular nucleus of the rat. Brain Res 670, 205-214, 1995.10.1016/0006-8993(94)01280-USearch in Google Scholar

Woodruff ML, Baisden RH, Whittington DL, Kelly JE. Inputs to the pontine A5 noradrenergic cell group: a horseradish peroxidase study. Exp Neurol 94, 782-787, 1986.10.1016/0014-4886(86)90256-6Search in Google Scholar

Yun IA, Wakabayashi KT, Fields HL, Nicola SM. Th e ventral tegmental area is required for the behavioral and nucleus accumbens neuronal fi ring responses to incentive cues. J Neurosci 4, 2923-2933, 2004.10.1523/JNEUROSCI.5282-03.2004672985415044531Search in Google Scholar

eISSN:
1336-0329
Lingua:
Inglese
Frequenza di pubblicazione:
4 volte all'anno
Argomenti della rivista:
Life Sciences, Molecular Biology, Neurobiology, Medicine, Basic Medical Science, other, Clinical Medicine, Internal Medicine, Endocrinology, Diabetology