Accesso libero

Using Dynamic Light Scattering Experimental Setup and Neural Networks For Particle Sizing

INFORMAZIONI SU QUESTO ARTICOLO

Cita

1. O.V. Salata, “Applications of nanoparticles in biology and medicine. Journal of Nanobiotechnology, vol. 2, no. 3, pp. 3-8, (2004), doi:10.1186/1477-3155-2-3.Search in Google Scholar

2. G.G. Leppard, “ Nanoparticles in the environment as revealed by transmission electron microscopy: detection, characterisation and activities”, Current Nanoscience vol. 4, no. 2, pp. 278-301, (2008).Search in Google Scholar

3. W. Hull, “A new method of chemical analysis”, J. Am. Chem. Soc., vol. 41, no. 8, pp 1168-1175, (1919), doi: 10.1021/ja02229a003Search in Google Scholar

4. A.L. Patterson, “The Scherrer Formula for X-Ray Particle Size Determination”, Phys. Rev. vol. 56, no. 10, pp. 978-982, (1939), doi:10.1103/PhysRev.56.978Search in Google Scholar

5. F. Zhang, S.W. Chan, J. E. Spanier, E. Apak, Q. Jin, R. D. Robinson, I. P. Herman, “Cerium oxide nanoparticles: Size-selective formation and structure analysis”, Appl. Phys. Lett. Vol. 80, no. 1, pp. 127-129 (2002); doi:10.1063/1.1430502.Search in Google Scholar

6. D. Chicea, “Nanoparticles and nanoparticle aggregates sizing by DLS and AFM”, Optoelectronics and Advanced Materials - Rapid Communications vol. 4, no. 9, pp. 1310 - 1315, (2010).Search in Google Scholar

7. L. M. Lacava, B. M. Lacava, R. B. Azevedo, Z. G. M. Lacava, N. Buske, A. L. Tronconi and P. C. Morais, “Nanoparticle sizing: a comparative study using atomic force microscopy, transmission electron microscopy, and ferromagnetic resonance”, Journal of Magnetism and Magnetic Materials, vol. 225, no. 1-2, pp. 79-83, (2001).Search in Google Scholar

8. JitKang Lim, Swee Pin Yeap, Hui Xin Che and Siew Chun Low, “Characterization of magnetic nanoparticle by dynamic light scattering”, Nanoscale Research Letters, vol. 8, no. 1, pp: 381, (2013), http://www.nanoscalereslett.com/content/8/1/381Search in Google Scholar

9. D. Chicea, “Coherent light scattering on nanofluids: computer simulation results”, Applied Optics, vol. 47, no. 10, pp. 1434-1442, DOI: 10.1364/AO.47.001434.10.1364/AO.47.001434Open DOISearch in Google Scholar

10. S.A. Prahl, M. Keijer, S.L. Jacques, A.J. Welch, “A Monte Carlo Model of light propagation in tissue”, SPIE Proc. Ser. vol. 5, pp. 102-111, (1989).10.1117/12.2283590Search in Google Scholar

11. D. Chicea, I. Turcu, “RWMCS - an alternative random walk Monte Carlo code to simulate light scattering in biological suspensions, OPTIK-International Journal for Light and Electron Optics, Vol 118 no. 5, pp 232-236, (2007), DOI:10.1016/j.ijleo.2006.02.00810.1016/j.ijleo.2006.02.008Open DOISearch in Google Scholar

12. L. Wang, S.L. Jacques, L. Zheng, “MCML - Monte Carlo modeling of light transport in multi-layered tissues”, Comput. Methods Programs Biomed., Vol. 47, pp. 131-146, (1995).10.1016/0169-2607(95)01640-FSearch in Google Scholar

13. J.D. Briers, “Laser Doppler, speckle and related techniques for blood perfusion mapping and imaging”, Physiol. Meas. Vol. 22, R35-R66, (2001).10.1088/0967-3334/22/4/20111761081Search in Google Scholar

14. Y. Piederrière, J. Cariou, Y. Guern, B. Le Jeune, G. Le Brun, J. Lotrian, “Scattering through fluids: speckle size measurement and Monte Carlo simulations close to and into the multiple scattering”, Optics Express vol. 12, pp. 176-188, (2004).10.1364/OPEX.12.00017619471524Open DOISearch in Google Scholar

15. Y. Piederriere, J. Le Meur, J. Cariou, J.F. Abgrall, M.T. Blouch, “Particle aggregation monitoring by speckle size measurement; application to blood platelets aggregation”, Optics Express, Vol. 12, pp. 4596-4601, (2004).10.1364/OPEX.12.004596Open DOISearch in Google Scholar

16. D. Chicea, “Speckle size, intensity and contrast measurement application in micron-size particle concentration assessment”, European Physical Journal Applied Physics, Vol. 40, pp. 305-310, DOI: 10.1051/epjap:2007163 (2007).10.1051/epjap:2007163(2007)Open DOISearch in Google Scholar

17. J.W. Goodman, “Laser speckle and related phenomena”, Topics in Applied Physics, Vol.9 , J.C. Dainty, Ed., Springer-Verlag, Berlin, Heidelberg, New York, Tokyo, (1984).Search in Google Scholar

18. M. Giglio, M. Carpineti, A. Vailati and D. Brogioli, “Near-field intensity correlations of scattered light“, Applied Optics, Vol. 40,pp. 4036-4040, (2001).10.1364/AO.40.004036Open DOISearch in Google Scholar

19. K. Gurney, “An Introduction to Neural Networks”,London: Routledge, ISBN 1-85728-673-1, (1997)10.4324/9780203451519Search in Google Scholar

20. Haykin, S. Neural Networks: “A Comprehensive Foundation”, Prentice Hall, ISBN 0-13-273350-1, (1999)Search in Google Scholar

21. V. V. Berdnik, R.D. Mukhamedjarov, V.A. Loiko, “Characterization of optically soft spheroidal particles bySearch in Google Scholar

multiangle light-scattering data by use of the neural-networks method”, Optics Letters, Vol. 29, No. 9, pp. 1019-1021, (2004).10.1364/OL.29.00101915143660Search in Google Scholar

22. P. Kaye, E. Hirst, Z. Wang-Thomas, “Neural-network-based spatial light-scattering instrument for hazardous airborne fiber detection”, Applied Optics, Vol. 36, No. 24, pp. 6149-6156, (1997).10.1364/AO.36.00614918259463Open DOISearch in Google Scholar

23. Z. Ulanowski, Z. Wang, P. Kaye, I.K. Ludlow, “Application of neural networks to the inverse light scattering problem for spheres”, Applied Optics, Vol. 37, No. 18, pp. 4027-4033, (1998).10.1364/AO.37.00402718273375Search in Google Scholar

24. V.V. Berdnik, V.A. Loiko, “Retrieval of size and refractive index of spherical particles by multiangle light scattering: neural network method application”, Applied Optics, vol. 48, no. 32, pp. 6178-6187, (2009).10.1364/AO.48.00617819904314Open DOISearch in Google Scholar

25. A.H. Carrieri, “Neural network pattern recognition by means of differential absorption Mueller matrix spectroscopy”, Applied Optics, vol. 38, no. 17, pp. 3759-3766, (1999).10.1364/AO.38.00375918319983Search in Google Scholar

26. D. Chicea, “Probing magnetic fluid nanoparticle aggregation in aqueous suspensions by coherent light scattering anisotropy measurement”, Journal of Optoelectronics and Advanced Materials, vol. 12, no. 4, pp. 858-863, (2010).Search in Google Scholar

27. D. Chicea, “A Study of Nanoparticle Aggregation by Coherent Light Scattering“, Current Nanoscience, vol. 8, no. 2, pp. 259-265, (2012).10.2174/157341312800167704Search in Google Scholar

28. N.A. Clark, J.H. Lunacek, G.B. Benedek, “A study of Brownian motion using light scattering”, American Journal of Physics, vol. 38, no. 5, pp. 575-585, (1970).10.1119/1.1976408Open DOISearch in Google Scholar

29. B. J. Berne, R. Pecora, Dynamic Light Scattering: With Applications to Chemistry, Biology, and Physics, John Willey, New York, (1976).Search in Google Scholar

30. B. J. Berne, R. Pecora, Dynamic Light Scattering: With Applications to Chemistry, Biology, and Physics, Dover Publications, (2000).Search in Google Scholar

31. D. Chicea, “Revealing Fe3O4 nanoparticles aggregation dynamics using dynamic light scattering, Optoelectronics and Advanced Materials-Rapid Communications, vol. 3, no. 12, pp. 1299-1305, (2009).Search in Google Scholar

32. K. Levenberg, "A Method for the Solution of Certain Problems in Least Squares," Quart. Appl. Math., vol.2, pp. 164-168, (1944).10.1090/qam/10666Open DOISearch in Google Scholar