Accesso libero

A new, simplified model for the estimation of polyphenol oxidation potentials based on the number of OH groups

INFORMAZIONI SU QUESTO ARTICOLO

Cita

1. Renaud S, de Lorgeril M. Wine, alcohol, platelets, and the French paradox for coronary heart disease. Lancet 1992;339:1523-6. doi: 10.1016/0140-6736(92)91277-FSearch in Google Scholar

2. Quiñones M, Miguel M, Aleixandre A. Beneficial effects of polyphenols on cardiovascular disease. Pharmacol Res 2013;68:125-31. doi: 10.1016/j.phrs.2012.10.018Search in Google Scholar

3. Di Domenico F, Foppoli C, Coccia R, Perluigi M. Antioxidants in cervical cancer: Chemopreventive and chemotherapeutic effects of polyphenols. Biochim Biophys Acta 2012;1822:737-47. doi: 10.1016/j.bbadis.2011.10.005Search in Google Scholar

4. Kim M-J, Kim Y-J, Park H-J, Chung J-H, Leem K-H, Kim H-K. Apoptotic effect of red wine polyphenols on human colon cancer SNU-C4 cells. Food Chem Toxicol 2006;44:898-902. doi: 10.1016/j.fct.2005.08.031Search in Google Scholar

5. Yamauchi R, Sasaki K, Yoshida K. Identification of epigallocatechin-3-gallate in green tea polyphenols as a potent inducer of p53-dependent apoptosis in the human lung cancer cell line A549. Toxicol in Vitro 2009;23:834-9. doi: 10.1016/j.tiv.2009.04.011Search in Google Scholar

6. Stagos D, Amoutzias GD, Matakos A, Spyrou A, Tsatsakis AM, Kouretas D. Chemoprevention of liver cancer by plant polyphenols. Food Chem Toxicol 2012;50:2155-70. doi: 10.1016/j.fct.2012.04.002Search in Google Scholar

7. Aquilano K, Baldelli S, Rotilio G, Ciriolo MR. Role of nitric oxide synthases in Parkinson’s disease: A review on the antioxidant and anti-inflammatory activity of polyphenols. Neurochem Res 2008;33:2416-26. doi: 10.1007/s11064-008-9697-6Search in Google Scholar

8. Plaza M, Batista ÂG, Cazarin CBB, Sandahl M, Turner C, Östman E, Maróstica Júnior MR. Characterization of antioxidant polyphenols from Myrciaria jaboticaba peel and their effects on glucose metabolism and antioxidant status: A pilot clinical study. Food Chem 2016;211:185-97. doi: 10.1016/j.foodchem.2016.04.142Search in Google Scholar

9. Đudarić L, Fužinac-Smojver A, Muhvić D, Giacometti J. The role of polyphenols on bone metabolism in osteoporosis. Food Res Int 2015;77:290-8. doi: 10.1016/j.foodres.2015.10.017Search in Google Scholar

10. Singh A, Holvoet S, Mercenier A. Dietary polyphenols in the prevention and treatment of allergic diseases. Clin Exp Allergy 2011;41:1346-59. doi: 10.1111/j.1365-2222.2011.03773.xSearch in Google Scholar

11. Pandey KB, Rizvi SI. Plant polyphenols as dietary antioxidants in human health and disease. Oxid Med Cell Longev 2009;2:270-8. doi: 10.4161/oxim.2.5.9498Search in Google Scholar

12. Guo Q, Zhao B, Shen S, Hou J, Hu J, Xin W. ESR study on the structure-antioxidant activity relationship of tea catechins and their epimers. Biochim Biophys Acta 1999;1427:13-23. doi: 10.1016/S0304-4165(98)00168-8Search in Google Scholar

13. Nakagawa T, Yokozawa T. Direct scavenging of nitric oxide and superoxide by green tea. Food Chem Toxicol 2002;40:1745-50. doi: 10.1016/S0278-6915(02)00169-2Search in Google Scholar

14. Hanasaki Y, Ogawa S, Fukui S. The correlation between active oxygens scavenging and antioxidative effects of flavonoids. Free Rad Giol Med 1994;16:845-50. doi: 10.1016/0891-5849(94)90202-XSearch in Google Scholar

15. Cos P, Ying L, Calomme M, Hu JP, Cimanga K, Van Poel B, Pieters L, Vlietnick AJ, Vanden Berghe D. Structure-activity relationship and classification of flavonoids as inhibitors of xanthine oxidase and superoxide scavengers. J Nat Prod 1998;61:71-6. doi: 10.1021/np970237hSearch in Google Scholar

16. Miller NJ, Castelluccio C, Tijburg L, Rice-Evans C. The antioxidant properties of theaflavins and their gallate esters - radical scavengers or metal chelators? FEBS Lett 1996;392:40-4. doi: 10.1016/0014-5793(96)00780-6Search in Google Scholar

17. Na HK, Kim EH, Jung JH, Lee HH, Hyun JW, Surh YJ. (-)-Epigallocatechin gallate induces Nrf2-mediated antioxidant enzyme expression via activation of PI3K and ERK in human mammary epithelial cells. Arch Biochem Biophys 2008;476:171-7. doi: 10.1016/j.abb.2008.04.003Search in Google Scholar

18. Estévez L, Mosquera RA. Molecular structure and antioxidant properties of delphinidin. J Phys Chem A 2008;112:10614-23. doi: 10.1021/jp8043237Search in Google Scholar

19. Leopoldini M, Russo N, Toscano M. The molecular basis of working mechanism of natural polyphenolic antioxidants. Food Chem 2011;125:288-306. doi: 10.1016/j.foodchem.2010.08.012Search in Google Scholar

20. Yang B, Kotani A, Aria K, Kusu F. Estimation of antioxidant activities of flavonoids from their oxidation potentials. Anal Sci 2001;17:599-604. PMID: 1170813910.2116/analsci.17.59911708139Search in Google Scholar

21. van Acker SABE, van den Berg DJ, Tromp MNJL, Griffioen DH, van Bennekom WP, van der Vijgh WJF, Bast A. Structural aspects of antioxidant activity of flavonoids. Free Rad Biol Med 1996;20:331-42. doi: 10.1016/0891-5849(95)02047-0Search in Google Scholar

22. Komorsky-Lovrić Š, Novak Jovanović I. Abrasive stripping square wave voltammetry of some natural antioxidants. Int J Electrochem Sci 2016;11:836-42.10.1016/S1452-3981(23)15887-1Search in Google Scholar

23. Hotta H, Nagano S, Ueda M, Tsujino Y, Koyama J, Osakai T. Higher radical scavenging activities of polyphenolic antioxidants can be ascribed to chemical reactions following their oxidation. Biochim Biophys Acta 2002;1572:123-32. doi: 10.1016/S0304-4165(02)00285-4Search in Google Scholar

24. Firuzi O, Lacanna A, Petrucci R, Morrosu G, Saso L. Evaluation of the antioxidant activity of flavonoids by “ferric reducing antioxidant power” assay and cyclic voltammetry. Biochim Biophys Acta 2005;1721:174-84. doi: 10.1016/j.bbagen.2004.11.001Search in Google Scholar

25. de Lima AA, Sussuchi LEM, de Giovani WF. Electrochemical and antioxidant properties of anthocyanins and anthocyanidins. Croat Chem Acta 2007;80:29-34.Search in Google Scholar

26. Aertega JF, Ruiz-Montoya M, Palma A, Alonso-Garrido G, Pintado S, Rodríguez-Mellado JM. Comparison of the simple cyclic voltammetry (CV) and DPPH assays for the determination of antioxidant capacity of active principles. Molecules 2012;12:5126-38. doi: 10.3390/molecules17055126Search in Google Scholar

27. Dičkancaitė E, Nemeikaitė A, Kalvelytė A, Čėnas N. Prooxidant character of flavonoid cytotoxicity: Structureactivity relationship. Biochem Mol Biol Int 1998;45:923-30. doi: 10.1016/S0014-5793(99)01561-6Search in Google Scholar

28. Perron NR, Hodges JN, Jenkins M, Brumaghim JL. Predicting how polyphenol antioxidants prevent DNA damage by binding to iron. Inorg Chem 2008;47:6153-61. doi: 10.1021/ic7022727Search in Google Scholar

29. Miličević A, Raos N. Modelling of protective mechanism of iron(II)-polyphenol binding with OH-related molecular descriptors. Croat Chem Acta 2016;89:1-5. doi: 10.5562/cca2996Search in Google Scholar

30. Raos N, Miličević A. QSAR analysis of antioxidant properties of polyphenols by OH-related molecular descriptors. In: Proceedings of the 4th South-East European Conference on Computational Mechanics, Kragujevac 2017[in press].Search in Google Scholar

31. I. Novak Jovanović I, Miličević A. A model for the estimation of oxidation potentials of polyphenols. J Mol Liquids 2017;241:255-9. doi: 10.1016/j.molliq.2017.06.017Search in Google Scholar

32. Komorsky-Lovrić Š, Novak I. Abrasive stripping voltammetry of myricetin and dihydromyricetin. Electrochim Acta 2013;98:153-6. doi: 10.1016/j.electacta.2013.03.062Search in Google Scholar

33. Novak I, Šeruga M, Komorsky-Lovrić Š. Electrochemical characterization of epigallocatechin gallate using squarewave voltammetry. Electroanalysis 2009;21:1019-25. doi: 10.1002/elan.200804509Search in Google Scholar

34. Novak I, Šeruga M, Komorsky-Lovrić Š. Square-wave voltammetry of epicatechin gallate on glassy carbon electrode. J Electroanal Chem 2009;631:71-5. doi: 10.1016/j.jelechem.2009.03.005Search in Google Scholar

35. Lučić B, Trinajstić N. Multivariate regression outperforms several robust architectures of neural networks in QSAR modeling. J Chem Inf Comput Sci 1999;39:121-32. doi: 10.1021/ci980090fSearch in Google Scholar

36. Chakraborty S, Basu S, Basak S. Effect of β-cyclodextrin on the molecular properties of myricetin upon nanoencapsulation: Insight from optical spectroscopy and quantum chemical studies. Carbohydr Polym 2014;99:116-25. doi: 10.1016/j.carbpol.2013.08.008Search in Google Scholar

eISSN:
0004-1254
Lingue:
Inglese, Slovenian
Frequenza di pubblicazione:
4 volte all'anno
Argomenti della rivista:
Medicine, Basic Medical Science, other