Accesso libero

Methods of Description and Interpretation of Impact Tests Results of Fruit and Vegetables

INFORMAZIONI SU QUESTO ARTICOLO

Cita

Ahmadi, E., Barikloo, H., Kashafi, M. (2016). Viscoelastic finite element analysis of the dynamic behavior of apple under impact loading with regard its different layers. Computers and Electronics in Agriculture, 121, 1-11.10.1016/j.compag.2015.11.017Search in Google Scholar

Alamar, M.C., Vanstreels, E., Oey, M.L., Molto, E., Nicolai, B.M. (2008). Micromechanical behaviour of apple tissue in tensile and compression test: storage conditions and cultivar effect. Journal of Food Engineering, 86, 324-333.10.1016/j.jfoodeng.2007.10.012Search in Google Scholar

Bower D R., Rohrbach R. P.: Application of vibratory sorting to blueberry firmness separation. Transactions of the ASAE 19(1): 185-191, 1976.Search in Google Scholar

Brusewitz, G.H. (1994). Drop impact testing applications to fruit quality. International Agrophysics, 8, 389-392.Search in Google Scholar

Celik, H.K. (2017). Determination of bruise susceptibility of pears (Ankara variety) to impact load by means of FEM-based explicit dynamics simulation. Postharvest Biology and Technology, 128, 83-97.10.1016/j.postharvbio.2017.01.015Search in Google Scholar

Delwiche, M.J., Sarig, Y. (1991). A probe impact sensor for fruit firmness measurement. Transactions of the ASAE, 34, 187-192.10.13031/2013.31643Search in Google Scholar

Dintwa, E., Van Zeebroeck, M., Tijskens, E., Ramon. H. (2005). Determination of parameters of tangential contact force model for viscoelastic spheroids (fruits) using rheometer device. Biosystems Engineering, 91, 321-327.10.1016/j.biosystemseng.2005.04.005Search in Google Scholar

Franke, J.E., Rohrbach, R.P. (1981). A nonlinear impact model for a sphere with a flat plate. Transactions of the ASAE, 24, 1683-1686.10.13031/2013.34512Search in Google Scholar

Gan-Mor, S., Galili, N. (2000). Rheological model of fruit collision an elastic plate. Journal of Agricultural Engineering Research, 75, 139-147.10.1006/jaer.1999.0493Search in Google Scholar

Gao, Y., Song, C., Rao, X., Ying, Y. (2018). Image processing-aided FEA for monitoring dynamic response of potato tubers to impact loading. Computers and Electronics in Agriculture, 151, 21-30.10.1016/j.compag.2018.05.027Search in Google Scholar

Hamann, D.D. (1970). Analysis of stress during impact of fruit considered to be viscoelastic. Transactions of the ASAE, 13, 893-899.10.13031/2013.38745Search in Google Scholar

Harker, F.R., Stec, M.G.H., Hallet, I.C., Bennet, L. (1997). Texture of parenchymatous plant tissue: a comparison between tensile and other instrumental and sensory measurements of tissue strength and juiciness. Postharvest Biology and Technology, 11, 63-72.10.1016/S0925-5214(97)00018-5Search in Google Scholar

Henry, Z.A., Zhang, H., Onks, D.O. (2000). New model for elastic behaviour of cellular material. Journal of Agricultural Engineering Research, 76, 399-408.10.1006/jaer.2000.0556Search in Google Scholar

Hunter S. C.: The Hertz problem for a rigid spherical indenter and a viscoelastic half-space. Journal of Mechanics and Physics of Solids 8: 219-234, 1960.Search in Google Scholar

Jaren, C., Garcia-Pardo, E. (2002). Using non-destructive impact testing for sorting fruits. Journal of Food Engineering, 53, 89-95.10.1016/S0260-8774(01)00144-3Search in Google Scholar

Komarnicki, P., Stopa, R., Szyjewicz, D., Młotek, M. (2016). Evaluation of bruise resistance of pears to impact load. Postharvest Biology and Technology, 114, 36-44.10.1016/j.postharvbio.2015.11.017Search in Google Scholar

Li, Z., Yang, H., Li, P., Liu, J., Wang, J., Xu, Y. (2013). Fruit biomechanics based on anatomy: a review. International Agrophysics, 27, 97-106.10.2478/v10247-012-0073-zSearch in Google Scholar

Lichtensteiger, M.J., Holmes, R.G., Hamdy, M.Y., Blaisdell, J. L. (1988). Evaluation of Kelvin model coefficients for viscoelastic spheres. Transactions of the ASAE, 31, 288-292.10.13031/2013.30702Search in Google Scholar

Menesatti, P., Paglia, G. (2001). Development of drop damage index of fruit resistance to damage. Journal of Agricultural Engineering Research, 80, 53-64.10.1006/jaer.2000.0669Search in Google Scholar

Menesatti, P., Paglia, G., Solaini,S., Zanella, A., Stainer, R., Costa, C., Cecchetti, M. (2002). Non-linear multiple regression models to estimate the drop damage index. Biosystems Engineering, 83, 319-326.10.1006/bioe.2002.0116Search in Google Scholar

Mitsuhashi-Gonzalez, K., Pitts, M.J., Fellman, J.K., Curry, E.A., Clary, C.D. (2010). Bruising profile of fresh apples associated with tissue type and structure. Applied Engineering in Agriculture, 26, 509-517.10.13031/2013.29942Search in Google Scholar

Nikara, S., Ahmadi, E., Nia, A.A. (2020). Finite element simulation of the micromechanical changes of the tissue and cells of potato response to impact during storage by scanning electron microscopy. Postharvest Biology and Technology, 164, 111153.10.1016/j.postharvbio.2020.111153Search in Google Scholar

Pang, D.W., Studman, C.J., Banks, N.H., Baas, P.H. (1996). Rapid assessment of the susceptibility of apples to bruising. Journal of Agricultural Engineering Research, 64, 37-48.10.1006/jaer.1996.0044Search in Google Scholar

Peleg, K. (1984). A mathematical model of produce damage mechanisms. Transaction of the ASAE, 27, 1275-1280.Search in Google Scholar

Ragni, L., Berardinelli, A. (2001). Mechanical behaviour of apples and damage during sorting and packaging. Journal of Agricultural Engineering Research, 78, 273-279.10.1006/jaer.2000.0609Search in Google Scholar

Rasli, M.A., Nawi, N.M., Ahmad, D., Yahaya, A. (2019). The effect of crop parameters on mechanical properties of oil palm fruitlets. Scientia Horticulturae, 250, 352-358.10.1016/j.scienta.2019.02.064Search in Google Scholar

Salarikia, A., Miraei, A.S.H., Golzarian, M.R., Mohammadinezhad, H. (2017). Finite element analysis of the dynamic behavior of pear under impact loading. Information Processing in Agriculture, 4, 64-77.10.1016/j.inpa.2016.12.003Search in Google Scholar

Siyami, S., Brown, G.K., Burgess, G.J., Gerrish, J.B., Tennes, B.R., Burton, C.L., Zapp, R.H. (1988). Apple impact bruise prediction models. Transactions of the ASAE, 31, 1038-1046.10.13031/2013.30819Search in Google Scholar

Stropek, Z., Gołacki, K. (2020). Bruise susceptibility and energy dissipation analysis in pears under impact loading conditions. Postharvest Biology and Technology, 163, 111120.10.1016/j.postharvbio.2020.111120Search in Google Scholar

Surdilovic, J., Praeger, U., Herold, B., Truppel, I., Geyer, M. (2018). Impact characterization of agricultural products by fall trajectory simulation and measurement. Computers and Electronics in Agriculture, 151, 460-468.10.1016/j.compag.2018.06.009Search in Google Scholar

Tijskens, E., Ramon, H., De Baerdemaeker, J. (2003). Discrete element modelling for process simulation in agriculture. Journal of Sound and Vibration, 266, 493-514.10.1016/S0022-460X(03)00581-9Search in Google Scholar

Van linden, V., Scheerlinck, N., Desmet, M., De Baerdemaeker, J. (2006). Factors that affect tomato bruise development as a result of mechanical impact. Postharvest Biology and Technology, 42, 260-270.10.1016/j.postharvbio.2006.07.001Search in Google Scholar

Van Zeebroeck, M., Tijskens, E., Van Liedekerke, P., Deli, V., De Baerdemaeker, J., Ramon, H. (2003). Determination of the dynamical behaviour of biological materials during impact using a pendulum device. Journal of Sound and Vibration, 266, 465-480.10.1016/S0022-460X(03)00579-0Search in Google Scholar

Van Zeebroeck, M., Van linden, V., Darius, P., De Ketelaere, B., Ramon, H., Tijskens, E. (2007). The effect of fruit factors on the bruise susceptibility of apples. Postharvest Biology and Technology, 46, 10-19.10.1016/j.postharvbio.2007.03.017Search in Google Scholar

Yen, M., Wan, Y. (2003). Determination of textural indices of guiava fruit using discriminate analysis by impact force. Transactions of the ASAE, 46, 1161-1166.Search in Google Scholar

Yurtlu, Y.B., Erdogan, D. (2005). Effect of storage time on some mechanical properties and bruise susceptibility of pears and apples. Turkish Journal of Agriculture and Forestry, 29, 469-482.Search in Google Scholar

Zarifneshat, S., Ghassemzadeh, H.R., Sadeghi, M., Abbaspour-Fard, M.H., Ahmadi, E., Javadi, A., Shervani-Tabar, M.T. (2010). Effect of impact level and fruit properties on Golden Delicious apple bruising. American Journal of Agricultural and Biological Sciences, 5, 114-121.Search in Google Scholar

Zhang X., Brusewitz G.H. (1991). Impact force model related to peach firmness. Transactions of the ASAE, 34, 2094-2098.10.13031/2013.31843Search in Google Scholar