Accesso libero

Antioxidative Responses of Microalgae to Heavy Metals

INFORMAZIONI SU QUESTO ARTICOLO

Cita

Braütigam A., Schaumlöffel D., Preud'homme H., Thondorf I. & Wesenberg D. 2011. Physiological characterization of cadmium-exposed Chlamydomonas reinhardtii. Plant Cell Environ. 34: 2071-2082.10.1111/j.1365-3040.2011.02404.x21819413Search in Google Scholar

Dresler S., Hanaka, A., Bednarek, W. & Maksymiec W. 2014. Accumulation of low-molecular-weight organic acids in roots and leaf segments of Zea mays plants treated with cadmium and copper. Acta Physiol. Plant. 36: 1565-1575.10.1007/s11738-014-1532-xSearch in Google Scholar

El-Naggar A. H. & El-Sheekh M. M. 1998. Abolishing cadmium toxicity in Chlorella vulgaris by ascorbic acid, calcium, glucose and reduced glutathione. Environ. Pollut. 101: 169-174.10.1016/S0269-7491(98)00089-XSearch in Google Scholar

Fargašová A. 2012. Physiological parameters utilization for metals ecotoxicity determination. Acta Environ. Univ. Comenianae (Bratislava). 20: 7-13.Search in Google Scholar

Gest N., Gautier H. & Stevens R. 2013. Ascorbate as seen through plant evolution: the rise of a successful molecule? J. Exp. Bot. 64: 33-53.10.1093/jxb/ers29723109712Search in Google Scholar

Goiris K., Van Colen W., Wilches I., León-Tamariz F., De Cooman L. & Muylaert K. 2015. Impact of nutrient stress on antioxidant production in three species of microalgae. Algal. Res. 7: 51-57.10.1016/j.algal.2014.12.002Search in Google Scholar

Hamed S. M., Zinta G., Klöck G., Asard H., Selim S. & Abdelgawad H. 2017. Zinc-induced differential oxidative stress and antioxidant responses in Chlorella sorokiniana and Scenedesmus acuminatus. Ecotox. Environ. Safe. 140: 256-263.10.1016/j.ecoenv.2017.02.05528273625Search in Google Scholar

Hermsen C., Koprivova A., Matthewman C., Wesenberg D., Krauss G.-J. & Kopriva S. 2010. Regulation of sulphate assimilation in Physcomitrella patens: mosses are different! Planta. 232: 461-470.10.1007/s00425-010-1190-120473684Search in Google Scholar

Kováčik J., Babula P., Klejdus B., Hedbavny J. & Jarošová M. 2014. Unexpected behavior of some nitric oxide modulators under cadmium excess in plant tissue. PLoS ONE. 9(3): e91685, doi:10.1371/journal.pone.0091685.10.1371/journal.pone.0091685395359624626462Search in Google Scholar

Kováčik J., Klejdus B., Babula P. & Hedbavny J. 2015. Nitric oxide donor modulates cadmium-induced physiological and metabolic changes in the green alga Coccomyxa subellipsoidea. Algal Res. 8: 45-52.10.1016/j.algal.2015.01.004Search in Google Scholar

Kováčik J., Klejdus B., Babula P. & Hedbavny J. 2016. Age affects not only metabolome but also metal toxicity in Scenedesmus quadricauda cultures. J. Hazard. Mater. 306: 58-66.10.1016/j.jhazmat.2015.11.05626687303Search in Google Scholar

Kováčik J., Babula P., Peterková V. & Hedbavny J. 2017a. Long-term impact of cadmium shows little damage in Scenedesmus acutiformis cultures. Algal Res. 25: 184-190.10.1016/j.algal.2017.04.029Search in Google Scholar

Kováčik J., Klejdus B., Babula P. & Hedbavny J. 2017b. Ascorbic acid affects short-term response of Scenedesmus quadricauda to cadmium excess. Algal Res. 24: 354-359.10.1016/j.algal.2017.04.026Search in Google Scholar

Kováčik J., Babula P. & Hedbavny J. 2017c. Comparison of vascular and non-vascular aquatic plant as indicators of cadmium toxicity. Chemosphere. 180: 86-92.10.1016/j.chemosphere.2017.04.00228391156Search in Google Scholar

Lin S.-T., Chiou C.-W., Chu Y.-L., Hsiao Y., Tseng Y.-F., Chen Y.-C., Chen H.-J., Chang H.-Y. & Lee T.-M. 2016. Enhanced ascorbate regeneration via dehydroascorbate reductase confers tolerance to photo-oxidative stress in Chlamydomonas reinhardtii. Plant Cell Physiol. 57: 2104-2121.10.1093/pcp/pcw12927440549Search in Google Scholar

Machado M. D. & Soares E. V. 2016. Short- and long-term exposure to heavy metals induced oxidative stress response in Pseudokirchneriella subcapitata. Clean – Soil, Air, Water 44: 1578-1583.10.1002/clen.201600020Search in Google Scholar

Mellado M., Contreras R. A., González A., Dennett G. & Moenne A. 2012. Copper-induced synthesis of ascorbate, glutathione and phytochelatins in the marine alga Ulva compressa (Chlorophyta). Plant Physiol. Biochem. 51: 102-108.10.1016/j.plaphy.2011.10.007Search in Google Scholar

Nowicka B., Pluciński B., Kuczyńska, P. & Kruk J. 2016. Physiological characterization of Chlamydomonas reinhardtii acclimated to chronic stress induced by Ag, Cd, Cr, Cu and Hg ions. Ecotox. Environ. Safe. 130: 133-145.10.1016/j.ecoenv.2016.04.01027104807Search in Google Scholar

Perales-Vela H. V., Pena-Castro J. M. & Canizares-Villanueva R. O. 2006. Heavy metal detoxification in eukaryotic microalgae. Chemosphere 64: 1-10.10.1016/j.chemosphere.2005.11.02416405948Search in Google Scholar

Piotrowska-Niczyporuk A., Bajguz A., Talarek M., Bralska M. & Zambrzycka E. 2015. The effect of lead on the growth, content of primary metabolites, and antioxidant response of green alga Acutodesmus obliquus (Chlorophyceae). Environ. Sci. Pollut. Res. 22: 19112-19123.10.1007/s11356-015-5118-ySearch in Google Scholar

Pokora W., Bascik-Remisiewicz A., Tukaj S., Kalinowska R., Pawlik-Skowronska B., Dziadziuszko M. & Tukaj Z. 2014. Adaptation strategies of two closely related Desmodesmus armatus (green alga) strains contained different amounts of cadmium: A study with light-induced synchronized cultures of algae. J. Plant Physiol. 171: 69-77.10.1016/j.jplph.2013.10.00624331421Search in Google Scholar

Romano R. L., Liria C. W., Machini M. T., Colepicolo P. & Zambotti-Villela L. 2017. Cadmium decreases the levels of glutathione and enhances the phytochelatin concentration in the marine dinoflagellate Lingulodinium polyedrum. J. Appl. Phycol. 29: 811-820.10.1007/s10811-016-0927-zSearch in Google Scholar

Ruiz-Domínguez M.C., Vaquero I., Obregón V., De La Morena B., Vílchez C. & Vega J. M. 2015. Lipid accumulation and antioxidant activity in the eukaryotic acidophilic microalga Coccomyxa sp. (strain onubensis) under nutrient starvation. J. Appl. Phycol. 27: 1099-1108.10.1007/s10811-014-0403-6Search in Google Scholar

Simmons D. B. D., Hayward A. R., Hutchinson T. C. & Neil Emery R. J. 2009. Identification and quantification of glutathione and phytochelatins from Chlorella vulgaris by RP-HPLC ESI-MS/MS and oxygen-free extraction. Anal. Bioanal. Chem. 395: 809-817.10.1007/s00216-009-3016-119688341Search in Google Scholar

Šmelková M., Molnárová M. & Fargašová A. 2013. Phytotoxic effects of nickel (Ni2+) on Sinapis alba L. seedlings. Acta Environ. Univ. Comenianae (Bratislava). 21: 69-79.Search in Google Scholar

Tóthová L., Blahušová E. & Molnárová M. 2011. Bioaccumulation of Zn and Cu in selected macrophyte species from reservoir Gabčíkovo. Acta Environ. Univ. Comenianae (Bratislava). 19: 99-107.Search in Google Scholar

Vidal-Meireles A., Neupert J., Zsigmond L., Rosado-Souza L., Kovács L., Nagy V., Galambos A., Fernie A. R., Bock R. & Tóth S. Z. 2017. Regulation of ascorbate biosynthesis in green algae has evolved to enable rapid stress-induced response via the VTC2 gene encoding GDP-L-galactose phosphorylase. New Phytol. 214: 668-681.10.1111/nph.1442528112386Search in Google Scholar

Yusof Y. A. M., Basari J. M. H., Mukti N. A., Sabuddin R., Razak Muda A., Sulaiman S., Makpol S. & Wan Ngah W. Z. 2011. Fatty acids composition of microalgae Chlorella vulgaris can be modulated by varying carbon dioxide concentration in outdoor culture. Afr. J. Biotechnol. 10: 13536-13542.10.5897/AJB11.1602Search in Google Scholar

eISSN:
1339-9802
Lingua:
Inglese
Frequenza di pubblicazione:
2 volte all'anno
Argomenti della rivista:
Architecture and Design, Architecture, Cities, Regions, Chemistry, Environmental Chemistry, Geosciences, other, Life Sciences, Ecology