Accesso libero

Potassium channel inhibitors induce oxidative stress in breast cancer cells

INFORMAZIONI SU QUESTO ARTICOLO

Cita

Sosa V, Moline T, Somoza R, Paciucci R, Kondoh H, ME LL. Oxidative stress and cancer: an overview. Ageing Res Rev. 2013; 12:376–90.10.1016/j.arr.2012.10.00423123177SosaVMolineTSomozaRPaciucciRKondohHMeLL.Oxidative stress and cancer: an overviewAgeing Res Rev.2013123769023123177Open DOISearch in Google Scholar

Gorrini C, Harris IS, Mak TW. Modulation of oxidative stress as an anticancer strategy. Nat Rev Drug Discov. 2013; 12:931–47.2428778110.1038/nrd4002GorriniCHarrisISMakTW.Modulation of oxidative stress as an anticancer strategyNat Rev Drug Discov.2013129314724287781Search in Google Scholar

Gupta R, Sikka SC. Prostate cancer and oxidative stress. In: Laher I, editor. Systems biology of free radicals and antioxidants. Berlin: Springer-Verlag; 2014. p. 2835–50.GuptaRSikkaSC.Prostate cancer and oxidative stressLaherISystems biology of free radicals and antioxidantsBerlinSpringer-Verlag201428355010.1007/978-3-642-30018-9_116Search in Google Scholar

Federico A, Morgillo F, Tuccillo C, Ciardiello F, Loguercio C. Chronic inflammation and oxidative stress in human carcinogenesis. Int J Cancer. 2007; 121:2381–6.1789386810.1002/ijc.23192FedericoAMorgilloFTuccilloCCiardielloFLoguercioC.Chronic inflammation and oxidative stress in human carcinogenesisInt J Cancer.20071212381617893868Search in Google Scholar

Cairns RA, Harris IS, Mak TW. Regulation of cancer cell metabolism. Nat Rev Cancer. 2011; 11:85–95.10.1038/nrc298121258394CairnsRAHarrisISMakTW.Regulation of cancer cell metabolismNat Rev Cancer.201111859521258394Open DOISearch in Google Scholar

Diehn M, Cho RW, Lobo NA, Kalisky T, Dorie MJ, Kulp AN, et al. Association of reactive oxygen species levels and radioresistance in cancer stem cells. Nature. 2009; 458:780–3.10.1038/nature0773319194462DiehnMChoRWLoboNAKaliskyTDorieMJKulpANAssociation of reactive oxygen species levels and radioresistance in cancer stem cellsNature.20094587803277861219194462Open DOISearch in Google Scholar

Hecht F, Pessoa CF, Gentile LB, Rosenthal D, Carvalho DP, Fortunato RS. The role of oxidative stress on breast cancer development and therapy. Tumour Biol. 2016; 37:4281–91.10.1007/s13277-016-4873-9HechtFPessoaCFGentileLBRosenthalDCarvalhoDPFortunatoRS.The role of oxidative stress on breast cancer development and therapyTumour Biol.20163742819126815507Open DOISearch in Google Scholar

Hernandes MS, Troncone LRP. Glycine as a neurotransmitter in the forebrain: a short review. J Neural Transm (Vienna). 2009; 116:1551–60.10.1007/s00702-009-0326-6HernandesMSTronconeLRP.Glycine as a neurotransmitter in the forebrain: a short reviewJ Neural Transm (Vienna).200911615516019826900Open DOISearch in Google Scholar

Leanza L, Zoratti M, Gulbins E, Szabo I. Mitochondrial ion channels as oncological targets. Oncogene. 2014; 33:5569–81.10.1038/onc.2013.57824469031LeanzaLZorattiMGulbinsESzaboI.Mitochondrial ion channels as oncological targetsOncogene.20143355698124469031Open DOISearch in Google Scholar

Villalonga N, Ferreres JC, Argilés JM, Condom E, Felipe A. Potassium channels are a new target field in anticancer drug design. Recent Pat Anticancer Drug Discov. 2007; 2:212–23.1822106410.2174/157489207782497181VillalongaNFerreresJCArgilésJMCondomEFelipeA.Potassium channels are a new target field in anticancer drug designRecent Pat Anticancer Drug Discov.200722122318221064Search in Google Scholar

Leanza L, Managò A, Zoratti M, Gulbins E, Szabo I. Pharmacological targeting of ion channels for cancer therapy: In vivo evidences. Biochim Biophys Acta. 2016; 1863:1385–97.2665864210.1016/j.bbamcr.2015.11.032LeanzaLManagòAZorattiMGulbinsESzaboI.Pharmacological targeting of ion channels for cancer therapy: In vivo evidencesBiochim Biophys Acta.2016186313859726658642Search in Google Scholar

Urrego D, Tomczak AP, Zahed F, Stühmer W, Pardo LA. Potassium channels in cell cycle and cell proliferation. Philos Trans R Soc Lond B Biol Sci. 2014; 369:20130094, 10.1098/rstb.2013.0094.24493742UrregoDTomczakAPZahedFStühmerWPardoLA.Potassium channels in cell cycle and cell proliferationPhilos Trans R Soc Lond B Biol Sci.20143692013009410.1098/rstb.2013.0094391734824493742Open DOISearch in Google Scholar

Jang SH, Choi SY, Ryu PD, Lee SY. Anti-proliferative effect of Kv1.3 blockers in A549 human lung adenocarcinoma in vitro and in vivo. Eur J Pharmacol. 2011; 651:26–32.2108760210.1016/j.ejphar.2010.10.066JangSHChoiSYRyuPDLeeSY.Anti-proliferative effect of Kv1.3 blockers in A549 human lung adenocarcinoma in vitro and in vivoEur J Pharmacol.2011651263221087602Search in Google Scholar

Borowiec AS, Hague F, Harir N, Guénin S, Guerineau F, Gouilleux F, et al. IGF-1 activates hEAG K+ channels through an Akt-dependent signaling pathway in breast cancer cells: role in cell proliferation. J Cell Physiol. 2007; 212:690–701.10.1002/jcp.2106517520698BorowiecASHagueFHarirNGuéninSGuerineauFGouilleuxFIGF-1 activates hEAG K+ channels through an Akt-dependent signaling pathway in breast cancer cells: role in cell proliferationJ Cell Physiol.200721269070117520698Open DOISearch in Google Scholar

Brevet M, Ahidouch A, Sevestre H, Merviel P, El Hiani Y, Robbe M, et al. Expression of K+ channels in normal and cancerous human breast. Histol Histopathol. 2008; 23:965–72.18498071BrevetMAhidouchASevestreHMervielPEl HianiYRobbeMExpression of K+ channels in normal and cancerous human breastHistol Histopathol.20082396572Search in Google Scholar

So EC, Huang Y-M, Hsing C-H, Liao Y-K, Wu S-N. Arecoline inhibits intermediate-conductance calcium-activated potassium channels in human glioblastoma cell lines. Eur J Pharmacol. 2015; 758:177–87.2584341410.1016/j.ejphar.2015.03.065SoECHuangY-MHsingC-HLiaoY-KWuS-N.Arecoline inhibits intermediate-conductance calcium-activated potassium channels in human glioblastoma cell linesEur J Pharmacol.20157581778725843414Search in Google Scholar

Leanza L, Venturini E, Kadow S, Carpinteiro A, Gulbins E, Becker KA. Targeting a mitochondrial potassium channel to fight cancer. Cell Calcium. 2015; 58:131–8.10.1016/j.ceca.2014.09.00625443654LeanzaLVenturiniEKadowSCarpinteiroAGulbinsEBeckerKA.Targeting a mitochondrial potassium channel to fight cancerCell Calcium.201558131825443654Open DOISearch in Google Scholar

Hu L, Pennington M, Jiang Q, Whartenby KA, Calabresi PA. Characterization of the functional properties of the voltage-gated potassium channel Kv1.3 in human CD4+ T lymphocytes. J Immunol. 2007; 179:4563–70.10.4049/jimmunol.179.7.456317878353HuLPenningtonMJiangQWhartenbyKACalabresiPA.Characterization of the functional properties of the voltage-gated potassium channel Kv1.3 in human CD4+ T lymphocytesJ Immunol.200717945637017878353Open DOISearch in Google Scholar

García-Quiroz J, Camacho J. Astemizole: an old anti-histamine as a new promising anti-cancer drug. Anticancer Agents Med Chem. 2011; 11:307–14.2144350410.2174/187152011795347513García-QuirozJCamachoJ.Astemizole: an old anti-histamine as a new promising anti-cancer drugAnticancer Agents Med Chem.2011113071421443504Search in Google Scholar

Kim Y, Kim WJ, Cha EJ. Quercetin-induced growth inhibition in human bladder cancer cells is associated with an increase in Ca2+-activated K+ channels. Korean J Physiol Pharmacol. 2011; 15:279–83.10.4196/kjpp.2011.15.5.279KimYKimWJChaEJ.Quercetin-induced growth inhibition in human bladder cancer cells is associated with an increase in Ca2+-activated K+ channelsKorean J Physiol Pharmacol.20111527983322279722128260Open DOISearch in Google Scholar

Jang SH, Kang KS, Ryu PD, Lee SY. Kv1.3 voltage-gated K+ channel subunit as a potential diagnostic marker and therapeutic target for breast cancer. BMB Rep. 2009; 42:535–9.1971259210.5483/BMBRep.2009.42.8.535JangSHKangKSRyuPDLeeSY.Kv1.3 voltage-gated K+ channel subunit as a potential diagnostic marker and therapeutic target for breast cancerBMB Rep.2009425359Search in Google Scholar

Chin LS, Park CC, Zitnay KM, Sinha M, DiPatri AJ Jr., Perillán P, et al. 4-Aminopyridine causes apoptosis and blocks an outward rectifier K+ channel in malignant astrocytoma cell lines. J Neurosci Res. 1997; 48:122–7.10.1002/(SICI)1097-4547(19970415)48:2<122::AID-JNR4>3.0.CO;2-E9130140ChinLSParkCCZitnayKMSinhaMDiPatriAJ Jr.PerillánP4-Aminopyridine causes apoptosis and blocks an outward rectifier K+ channel in malignant astrocytoma cell linesJ Neurosci Res.1997481227Open DOISearch in Google Scholar

Ru Q, Tian X, Wu YX, Wu RH, Pi MS, Li CY. Voltage-gated and ATP-sensitive K+ channels are associated with cell proliferation and tumorigenesis of human glioma. Oncol Rep. 2014; 31:842–8.10.3892/or.2013.287524284968RuQTianXWuYXWuRHPiMSLiCY.Voltage-gated and ATP-sensitive K+ channels are associated with cell proliferation and tumorigenesis of human gliomaOncol Rep.2014318428Open DOISearch in Google Scholar

Liu J, Feng S, Zhang L, Wu Z, Chen Q, Cheng W, et al. [Expression and properties of potassium channels in human mammary epithelial cell line MCF10A and its possible role in proliferation]. Sheng Li Xue Bao [Acta Physiologica Sinica]. 2010; 62:203–9. [in Chinese, English abstract].20571736LiuJFengSZhangLWuZChenQChengW[Expression and properties of potassium channels in human mammary epithelial cell line MCF10A and its possible role in proliferation]Sheng Li Xue Bao [Acta Physiologica Sinica].2010622039[in Chinese, English abstract]Search in Google Scholar

Leanza L, Henry B, Sassi N, Zoratti M, Chandy KG, Gulbins E, et al. Inhibitors of mitochondrial Kv1.3 channels induce Bax/Bak-independent death of cancer cells. EMBO Mol Med. 2012; 4:577–93.2249611710.1002/emmm.201200235LeanzaLHenryBSassiNZorattiMChandyKGGulbinsEInhibitors of mitochondrial Kv1.3 channels induce Bax/Bak-independent death of cancer cellsEMBO Mol Med.2012457793Search in Google Scholar

de Guadalupe Chávez-Lòpez M, Hernández-Gallegos E, Vázquez-Sánchez AY, Gariglio P, Camacho J. Antiproliferative and proapoptotic effects of astemizole on cervical cancer cells. Int J Gynecol Cancer. 2014; 24:824–8.10.1097/IGC.000000000000015124819656de Guadalupe Chávez-LòpezMHernández-GallegosEVázquez-SánchezAYGariglioPCamachoJ.Antiproliferative and proapoptotic effects of astemizole on cervical cancer cellsInt J Gynecol Cancer.2014248248Open DOISearch in Google Scholar

Ouadid-Ahidouch H, Le Bourhis X, Roudbaraki M, Toillon RA, Delcourt P, Prevarskaya N. Changes in the K+ current-density of MCF-7 cells during progression through the cell cycle: possible involvement of a h.ether-á-gogo K+ channel. Receptors Channels. 2001; 7:345–56.Ouadid-AhidouchHLe BourhisXRoudbarakiMToillonRADelcourtPPrevarskayaN.Changes in the K+ current-density of MCF-7 cells during progression through the cell cycle: possible involvement of a h.ether-á-gogo K+ channelReceptors Channels.2001734556Search in Google Scholar

Breier A, Gibalova L, Seres M, Barancik M, Sulova Z. New insight into p-glycoprotein as a drug target. Anticancer Agents Med Chem. 2013; 13:159–70.2293141310.2174/187152013804487380BreierAGibalovaLSeresMBarancikMSulovaZ.New insight into p-glycoprotein as a drug targetAnticancer Agents Med Chem.20131315970Search in Google Scholar

Jahchan NS, Dudley JT, Mazur PK, Flores N, Yang D, Palmerton A, et al. A drug repositioning approach identifies tricyclic antidepressants as inhibitors of small cell lung cancer and other neuroendocrine tumors. Cancer Discov. 2013; 3:1364–77.10.1158/2159-8290.CD-13-018324078773JahchanNSDudleyJTMazurPKFloresNYangDPalmertonAA drug repositioning approach identifies tricyclic antidepressants as inhibitors of small cell lung cancer and other neuroendocrine tumorsCancer Discov.20133136477Open DOISearch in Google Scholar

García-Quiroz J, García-Becerra R, Santos-Martínez N, Barrera D, Ordaz-Rosado D, Avila E, et al. In vivo dual targeting of the oncogenic Ether-á-go-go-1 potassium channel by calcitriol and astemizole results in enhanced antineoplastic effects in breast tumors. BMC Cancer. 2014; 14:745, 10.1186/1471-2407-14-745.25280486García-QuirozJGarcía-BecerraRSantos-MartínezNBarreraDOrdaz-RosadoDAvilaEIn vivo dual targeting of the oncogenic Ether-á-go-go-1 potassium channel by calcitriol and astemizole results in enhanced antineoplastic effects in breast tumorsBMC Cancer.20141474510.1186/1471-2407-14-745Open DOISearch in Google Scholar

Venturini E. Kv1.3 inhibitors in the treatment of glioma and melanoma [doctoral dissertation]. Germany: Universität Duisburg-Essen; 2015.VenturiniE.Kv1.3 inhibitors in the treatment of glioma and melanoma [doctoral dissertation]GermanyUniversität Duisburg-Essen2015Search in Google Scholar

Stone JR, Yang S. Hydrogen peroxide: a signaling messenger. Antioxid Redox Signal. 2006; 8:243–70.10.1089/ars.2006.8.24316677071StoneJRYangS.Hydrogen peroxide: a signaling messengerAntioxid Redox Signal.2006824370Open DOISearch in Google Scholar

Dyugovskaya L, Lavie P, Lavie L. Increased adhesion molecules expression and production of reactive oxygen species in leukocytes of sleep apnea patients. Am J Respir Crit Care Med. 2002; 165:934–9.1193471710.1164/ajrccm.165.7.2104126DyugovskayaLLaviePLavieL.Increased adhesion molecules expression and production of reactive oxygen species in leukocytes of sleep apnea patientsAm J Respir Crit Care Med.20021659349Search in Google Scholar

Chattopadhyay MK, Tabor CW, Tabor H. Polyamine deficiency leads to accumulation of reactive oxygen species in a spe2Δ mutant of Saccharomyces cerevisiae. Yeast. 2006; 23:751–61.10.1002/yea.1393ChattopadhyayMKTaborCWTaborH.Polyamine deficiency leads to accumulation of reactive oxygen species in a spe2Δ mutant of Saccharomyces cerevisiaeYeast.20062375161Open DOISearch in Google Scholar

Hermann A, Sitdikova GF, Weiger TM. Oxidative stress and maxi calcium-activated potassium (BK) channels. Biomolecules. 2015; 5:1870–911.10.3390/biom503187026287261HermannASitdikovaGFWeigerTM.Oxidative stress and maxi calcium-activated potassium (BK) channelsBiomolecules.201551870911459877926287261Open DOISearch in Google Scholar

Agostinelli E, Tempera G, Viceconte N, Saccoccio S, Battaglia V, Grancara S, et al. Potential anticancer application of polyamine oxidation products formed by amine oxidase: a new therapeutic approach. Amino Acids. 2010; 38:353–68.10.1007/s00726-009-0431-820012114AgostinelliETemperaGViceconteNSaccoccioSBattagliaVGrancaraSPotential anticancer application of polyamine oxidation products formed by amine oxidase: a new therapeutic approachAmino Acids.2010383536820012114Open DOISearch in Google Scholar

Szabó I, Bock J, Grassmé H, Soddemann M, Wilker B, Lang F, et al. Mitochondrial potassium channel Kv1.3 mediates Bax-induced apoptosis in lymphocytes. Proc Natl Acad Sci U S A. 2008; 105:14861–6.1881830410.1073/pnas.0804236105SzabóIBockJGrassméHSoddemannMWilkerBLangFMitochondrial potassium channel Kv1.3 mediates Bax-induced apoptosis in lymphocytesProc Natl Acad Sci U S A.2008105148616256745818818304Search in Google Scholar

Jakhar R, Paul S, Bhardwaj M, Kang SC. Astemizole-Histamine induces Beclin-1-independent autophagy by targeting p53-dependent crosstalk between autophagy and apoptosis. Cancer Lett. 2016; 372:89–100.2673906110.1016/j.canlet.2015.12.024JakharRPaulSBhardwajMKangSC.Astemizole-Histamine induces Beclin-1-independent autophagy by targeting p53-dependent crosstalk between autophagy and apoptosisCancer Lett.20163728910026739061Search in Google Scholar

Woodfork KA, Wonderlin WF, Peterson VA, Strobl JS. Inhibition of ATP-sensitive potassium channels causes reversible cell-cycle arrest of human breast cancer cells in tissue culture. J Cell Physiol. 1995; 162:163–71.782242710.1002/jcp.1041620202WoodforkKAWonderlinWFPetersonVAStroblJS.Inhibition of ATP-sensitive potassium channels causes reversible cell-cycle arrest of human breast cancer cells in tissue cultureJ Cell Physiol.1995162163717822427Search in Google Scholar

Ouadid-Ahidouch H, Roudbaraki M, Delcourt P, Ahidouch A, Joury N, Prevarskaya N. Functional and molecular identification of intermediate-conductance Ca2+-activated K+ channels in breast cancer cells: association with cell cycle progression. Am J Physiol Cell Physiol. 2004; 287:C125–34.1498523710.1152/ajpcell.00488.2003Ouadid-AhidouchHRoudbarakiMDelcourtPAhidouchAJouryNPrevarskayaN.Functional and molecular identification of intermediate-conductance Ca2+-activated K+ channels in breast cancer cells: association with cell cycle progressionAm J Physiol Cell Physiol.2004287C1253414985237Search in Google Scholar

Zhang P, Yang X, Yin Q, Yi J, Shen W, Zhao L, et al. Inhibition of SK4 potassium channels suppresses cell proliferation, migration and the epithelial–mesenchymal transition in triple-negative breast cancer cells. PLoS One. 2016; 11:e0154471, 10.1371/journal.pone.0154471.27124117ZhangPYangXYinQYiJShenWZhaoLInhibition of SK4 potassium channels suppresses cell proliferation, migration and the epithelial–mesenchymal transition in triple-negative breast cancer cellsPLoS One.201611e015447110.1371/journal.pone.0154471484962827124117Open DOISearch in Google Scholar

eISSN:
1875-855X
Lingua:
Inglese
Frequenza di pubblicazione:
6 volte all'anno
Argomenti della rivista:
Medicine, Assistive Professions, Nursing, Basic Medical Science, other, Clinical Medicine