Accès libre

Monitoring Change of Body Fluid during Physical Exercise using Bioimpedance Spectroscopy and Finite Element Simulations

À propos de cet article

Citez

Sawka M. N., Physiological consequences of hypohydration: exercise performance and thermoregulation, Med Sci Sports Exer, 24, 657-670 (1992).SawkaM. N.Physiological consequences of hypohydration: exercise performance and thermoregulationMed Sci Sports Exer24657670199210.1249/00005768-199206000-00008Search in Google Scholar

Ekblom B., Applied physiology of soccer, Sports Med, 3, 50-60, (1986). dx.doi.org/10.2165/00007256-198603010-00005363312010.2165/00007256-198603010-00005EkblomB.Applied physiology of soccerSports Med350601986dx.doi.org/10.2165/00007256-198603010-00005Search in Google Scholar

Mustafa I. K. Y. and Mahmoud N. E. A., Evaporative water loss in African soccer players, J Sports Med Phys Fitn, 19, 181-183, (1979).MustafaI. K. Y.MahmoudN. E. A.Evaporative water loss in African soccer playersJ Sports Med Phys Fitn191811831979Search in Google Scholar

Bangsbo J., The physiology of soccer - with special reference to intense intermittent exercise, Copenhagen: University of Copenhagen, 1993.BangsboJ.The physiology of soccer - with special reference to intense intermittent exerciseCopenhagenUniversity of Copenhagen1993Search in Google Scholar

Casa D. J. and Stearns R.L. and Lopez R.M. and Ganio M.S., Influence of hydration on physiological function and performance during trail running in the heat, Journal of Athletic Training, 45, 147-156, (2010). dx.doi.org/10.4085/1062-6050-45.2.14710.4085/1062-6050-45.2.14720210618CasaD. J.StearnsR.L.LopezR.M.GanioM.S.Influence of hydration on physiological function and performance during trail running in the heatJournal of Athletic Training451471562010dx.doi.org/10.4085/1062-6050-45.2147Open DOISearch in Google Scholar

Higgins K. and Reid P.H. and Going S.B. and Howell W.H., Validation of bioimpedance spectroscopy to assess acute changes in hydration status, Medicine & Science in Sports & Exercise, 984-990, (2007). dx.doi.org/10.1249/mss.0b013e31803bb4d4HigginsK.ReidP.H.GoingS.B.HowellW.H.Validation of bioimpedance spectroscopy to assess acute changes in hydration statusMedicine & Science in Sports & Exercise9849902007dx.doi.org/10.1249/mss0b013e31803bb4d4Open DOISearch in Google Scholar

Moissl U. and Wabel P. and Chamney P. et al.,Body fluid volume determination via body composition Spectroscopy in health and disease, Physiol. Measurement, 27, 921-933, (2006). dx.doi.org/10.1088/0967-3334/27/9/01210.1088/0967-3334/27/9/012MoisslU.WabelP.ChamneyP.et al.,Body fluid volume determination via body composition Spectroscopy in health and disease, PhysiolMeasurement279219332006dx.doi.org/10.1088/0967-3334/27/9/012Open DOISearch in Google Scholar

Medrano G. and Beckmann L. and Gube M. and Kasim R. and Kim S. and Kraus T. and Leonhardt S., Continous Hand-to-Foot and Segmental Bioimpedance Spectroscopy Measurements within a Period of Five Days, World Congress on Medical Physics and Biomedical Engineering, IFMBE Proceedings, 25, 122-125, (2009). dx.doi.org/10.1007/978-3-642-03885-335MedranoG.BeckmannL.GubeM.KasimR.KimS.KrausT.LeonhardtS.Continous Hand-to-Foot and Segmental Bioimpedance Spectroscopy Measurements within a Period of Five DaysWorld Congress on Medical Physics and Biomedical Engineering, IFMBE Proceedings251221252009dx.doi.org/10.1007/978-3-642-03885-3 35Open DOISearch in Google Scholar

Medrano G. and Eitner F. and Walter M. and Leonhardt S., Model-based correction of the influence of body position on continuous segmental and hand-to-foot bioimpedance measurements, Med Biol Eng Comput, 48, 531-541 (2010). dx.doi.org/10.1007/s11517-010-0602-510.1007/s11517-010-0602-520405231MedranoG.EitnerF.WalterM.LeonhardtS.Model-based correction of the influence of body position on continuous segmental and hand-to-foot bioimpedance measurementsMed Biol Eng Comput485315412010dx.doi.org/10.1007/s11517-010-0602-5Open DOISearch in Google Scholar

Cornish B.H. and Thomas B.J. and Ward L.C., Effect of temperature and sweating on Bioimpedance Measurements, Appl.Radiat.Isol, 49, No.5/6, 475-476, (1998). dx.doi.org/10.1016/S0969-8043(97)00057-210.1016/S0969-8043(97)00057-2CornishB.H.ThomasB.J.WardL.C.Effect of temperature and sweating on Bioimpedance MeasurementsAppl.Radiat.Isol49No.5/64754761998dx.doi.org/10.1016/S0969-8043(97)00057-2Open DOISearch in Google Scholar

Grimnes S. and Martinsen O., Bioimpedance and Bioelectricity Basics, 1st ed. Academic Press. London, (2000).GrimnesS.MartinsenO.Bioimpedance and Bioelectricity Basics1st edAcademic PressLondon200010.1016/B978-012303260-7/50001-0Search in Google Scholar

O’Brien C. and Young A.J. and Sawka M.N., Bioelectrical impedance to estimate changes in hydration status, Int J Sports Med, 23, 361-366, (2002). dx.doi.org/10.1055/s-2002-331451216588810.1055/s-2002-33145O’BrienC.YoungA.J.SawkaM.N.Bioelectrical impedance to estimate changes in hydration statusInt J Sports Med233613662002dx.doi.org/10.1055/s-2002-3314512165888Search in Google Scholar

Sawka M. N. and Coyle E. F., Influence of body water and blood volume on thermoregulation and exercise performance in the heat, Exerc Sport Sci Rev, 27, 167-218,(1999).10791017SawkaM. N.CoyleE. F.Influence of body water and blood volume on thermoregulation and exercise performance in the heatExerc Sport Sci Rev27167218199910.1249/00003677-199900270-00008Search in Google Scholar

Segal K., Use of bioelectrical impedance analysis measurements as an evaluation for participating in sports, Am J Clin Nutr, 57 (suppl), 469-471, (1996).SegalK.Use of bioelectrical impedance analysis measurements as an evaluation for participating in sportsAm J Clin Nutr57suppl469471199610.1093/ajcn/64.3.469S8780365Search in Google Scholar

O’Brien C. and Baker-Fulco C.J. and Young A.J. and Sawka M.N., Bioimpedance assessment of hypohydration, Med Sci Sports Exerc, 31, 1466-1471, (1999). dx.doi.org/10.1097/00005768-199910000-0001710.1097/00005768-199910000-0001710527321O’BrienC.Baker-FulcoC.J.YoungA.J.SawkaM.N.Bioimpedance assessment of hypohydrationMed Sci Sports Exerc31146614711999dx.doi.org/10.1097/00005768-199910000-0001710527321Open DOISearch in Google Scholar

Saunders M.J. and Blevins J.E. and Broeder C.E., Effect of hydration changes on bioelectrical impedance in endurance trained individuals, Med Sci Sports Exer., 30, 885-892, (1998). dx.doi.org/10.1097/00005768-199806000-00017SaundersM.J.BlevinsJ.E.BroederC.E.Effect of hydration changes on bioelectrical impedance in endurance trained individualsMed Sci Sports Exer308858921998dx.doi.org/10.1097/00005768-199806000-00017Search in Google Scholar

Khaled M.A. and McCutcheon M.J.and Reddy S. and Pearman P.L. et al., Electrical impedance in assessing human body composition: the BIA method, Am J Clin Nutr, 47, 789-792, (1988).10.1093/ajcn/47.5.7893364394KhaledM.A.McCutcheonM.J.ReddyS.PearmanP.L.Electrical impedance in assessing human body composition: the BIA methodAm J Clin Nutr4778979219883364394Open DOISearch in Google Scholar

Jürimäe J. and Jürimäe T. and Pihl E., Changes in body fluids during endurance rowing training, Annals of the New York Academy of Sciences, 904, 353-358, (2000).10865770JürimäeJ.JürimäeT.PihlE.Changes in body fluids during endurance rowing trainingAnnals of the New York Academy of Sciences904353358200010.1111/j.1749-6632.2000.tb06481.x10865770Search in Google Scholar

Caton J.R. and Molé P.A. and Adams W.C and Heustis D.S., Body composition analysis by bioelectrical impedance: effect of skin temperature, Med and Sci in Sports and Exerc, 20, 489-491, (1988).CatonJ.R.MoléP.A.AdamsW.CHeustisD.S.Body composition analysis by bioelectrical impedance: effect of skin temperatureMed and Sci in Sports and Exerc20489491198810.1249/00005768-198810000-00010Search in Google Scholar

Siauve N. and Scorretti R. and Burais N. and Nicolas L. and Nicolas A., Electromagnetic fields and human body: a new challenge for the electromagnetic field computation, Compel, 22, 457-469, (2003). dx.doi.org/10.1108/0332164031047486810.1108/03321640310474868SiauveN.ScorrettiR.BuraisN.NicolasL.NicolasA.Electromagnetic fields and human body: a new challenge for the electromagnetic field computationCompel224574692003dx.doi.org/10.1108/03321640310474868Open DOISearch in Google Scholar

Beckmann L. and van Riesen D. and Leonhardt S., Optimal electrode placement and frequency range selection for the detection of lung water using Bioimpedance Spectroscopy, 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society - EMBC 2007, Lyon, France, (2007). dx.doi.org/10.1109/IEMBS.2007.4352882BeckmannL.vanRiesen D.LeonhardtS.Optimal electrode placement and frequency range selection for the detection of lung water using Bioimpedance Spectroscopy29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society - EMBC 2007Lyon, France2007dx.doi.org/10.1109/IEMBS.20074352882Open DOISearch in Google Scholar

Wang Y. and Haynor D. R. and Kim Y., A finite-element study of the effects of electrode position on the measured impedance change in impedance cardiography, IEEE Transactions on Biomedica Engineering, 48, No.12, (2001). dx.doi.org/10.1109/10.966598WangY.HaynorD. R.KimY.A finite-element study of the effects of electrode position on the measured impedance change in impedance cardiographyIEEE Transactions on Biomedica Engineering48No.122001dx.doi.org/10.1109/10966598Open DOISearch in Google Scholar

Gagnon H. and Guardo R. and Kokta V. and Hartinger A. E., A hybrid FEM model to simulate the electrical characteristics of biological tissues at the cellular level, Journal of Physics: Conference Series 224, (2010).GagnonH.GuardoR.KoktaV.HartingerA. E.A hybrid FEM model to simulate the electrical characteristics of biological tissues at the cellular levelJournal of Physics: Conference Series224201010.1088/1742-6596/224/1/012084Search in Google Scholar

Barchanski A. and Wittorf S. and Weiland T., Simulation of bioimpedance spectroscopy using the finite integration technique and high-resolution human body models, Bioelectromagnetics, (2005).BarchanskiA.WittorfS.WeilandT.Simulation of bioimpedance spectroscopy using the finite integration technique and high-resolution human body modelsBioelectromagnetics2005Search in Google Scholar

Ulbrich M. and Röthlingshöfer L. and Cordes A. and Leonhardt S., Simulation of Electromagnetic Fields for Impedance Measurements in Medical Engineering, 44. Jahrestagung der Deutschen Gesellschaft für Biomedizinische Technik (BMT2010), Rostock, Deutschland, (2010).UlbrichM.RöthlingshöferL.CordesA.LeonhardtS.Simulation of Electromagnetic Fields for Impedance Measurements in Medical Engineering, 44Jahrestagung der Deutschen Gesellschaft für Biomedizinische Technik (BMT2010)Rostock, Deutschland2010Search in Google Scholar

Clemens M., Discrete Electromagnetism with the Finite Integration Technique, Progress In Electromagnetics Research, 65-87, (2001). dx.doi.org/10.2528/PIER00080103ClemensM.Discrete Electromagnetism with the Finite Integration TechniqueProgress In Electromagnetics Research65872001dx.doi.org/10.2528/PIER0008010310.2528/PIER00080103Search in Google Scholar

Gabriel C. and Gabriel S. and Lau R.W., The dielectric properties of biological tissues: II Measurements in the frequency range 10 Hz to 20 GHz, in Physics in Medicine and Biology, 41, (1996). dx.doi.org/10.1088/0031-9155/41/11/0028938025GabrielC.GabrielS.LauR.W.The dielectric properties of biological tissues: II Measurements in the frequency range 10 Hz to 20 GHzPhysics in Medicine and Biology411996dx.doi.org/10.1088/0031-9155/41/11/00210.1088/0031-9155/41/11/0028938025Search in Google Scholar

Xitron Technologies, Hydra ECF/ICF (Model 4200), Bioimpedance spectrum analyser. Operating manual, Xitron Technologies Inc., San Diego, (2001).Xitron Technologies, Hydra ECF/ICF (Model 4200)Bioimpedance spectrum analyserOperating manual, Xitron Technologies IncSan Diego2001Search in Google Scholar

Hanai T., Electrical properties of emulsions in Sherman DH, ed. Emulsions Science, London Academic, 354-477, (1968).HanaiT.Electrical properties of emulsionsShermanDHEmulsions ScienceLondon Academic3544771968Search in Google Scholar

Matthie J., Second generation mixture theory equation for estimating intracellular water using bioimpedance spectroscopy, J Appl Physiol, 99, 780-781, (2005). dx.doi.org/10.1152/japplphysiol.00145.200510.1152/japplphysiol.00145.200516020450MatthieJ.Second generation mixture theory equation for estimating intracellular water using bioimpedance spectroscopyJ Appl Physiol997807812005dx.doi.org/10.1152/japplphysiol.00145200516020450Open DOISearch in Google Scholar

Krämer M., A new model for the determination of fluid status and body composition from bioimpedance measurements, Physiological Measurement, 27, 901-919, (2006). dx.doi.org/10.1088/0967-3334/27/9/01110.1088/0967-3334/27/9/01116868354KrämerM.A new model for the determination of fluid status and body composition from bioimpedance measurementsPhysiological Measurement279019192006dx.doi.org/10.1088/0967-3334/27/9/01116868354Open DOISearch in Google Scholar

National Library of Medicine, ”The visible human project.” [Online]. Available: www.nlm.nih.gov/research/visible/National Library of Medicine”The visible human project.”[Online]. Availablewww.nlm.nih.gov/research/visible/Search in Google Scholar

Medrano G. and Eitner F.and Floege J.and Leonhardt S., A Novel Bioimpedance Technique to Monitor Fluid Volume State During Hemodialysis Treatment, ASAIO J., 56(3), 215-20, (2010). dx.doi.org/10.1097/MAT.0b013e3181d8916010.1097/MAT.0b013e3181d8916020404719MedranoG.EitnerFFloegeJ.LeonhardtS.A Novel Bioimpedance Technique to Monitor Fluid Volume State During Hemodialysis TreatmentASAIO J563215202010dx.doi.org/10.1097/MAT0b013e3181d8916020404719Open DOISearch in Google Scholar