Accès libre

Conductivity change with needle electrode during high frequency irreversible electroporation: a finite element study

À propos de cet article

Citez

[1] Neumann E, Schaefer-Ridder M, Wang Y, Hofschneider P. Gene transfer into mouse lyoma cells by electroporation in high electric fields. EMBO J. 1982;1(7):841-845.10.1002/j.1460-2075.1982.tb01257.xSearch in Google Scholar

[2] DeBruin KA, Krassowska W. Modeling electroporation in a single cell. I. Effects of field strength and rest potential. Biophys J. 1999;77(3):1213-1224.10.1016/S0006-3495(99)76973-0Search in Google Scholar

[3] Lu DS, Kee ST, Lee EW. Irreversible electroporation: ready for prime time? Tech Vasc Interv Radiol. 2013;16(4):277-286.10.1053/j.tvir.2013.08.01024238383Search in Google Scholar

[4] Weaver JC. Electroporation of cells and tissues. IEEE Trans Plasma Sci. 2000;28:24-33.10.1109/27.842820Search in Google Scholar

[5] Rubinsky B. Irreversible electroporation in medicine. Technol Cancer Res Treat. 2007;6(4):255-259.10.1177/15330346070060040117668932Search in Google Scholar

[6] Rubinsky B, Onik G, Mikus P. Irreversible electroporation: a new ablation modality—clinical implications. Technol Cancer Res Treat. 2007;6(1):37-48.10.1177/15330346070060010617241099Search in Google Scholar

[7] Onik G, Mikus P, Rubinsky B. Irreversible electroporation: implications for prostate ablation. Technol Cancer Res Treat. 2007;6(4):295-300.10.1177/15330346070060040517668936Search in Google Scholar

[8] Arena CB, Sano MB, Rossmeisl JH, et al. High-frequency irreversible electroporation (H-FIRE) for non-thermal ablation without muscle contraction. Biomed Eng Online. 2011;10:102.10.1186/1475-925X-10-102325829222104372Search in Google Scholar

[9] Reilly JP, Freeman VT, Larkin WD. Sensory effects of transient electrical stimulation-evaluation with a neuroelectric model. IEEE Trans Biomed Eng. 1985;32(12):1001-1011.10.1109/TBME.1985.3255094077078Search in Google Scholar

[10] Miklavčič D, Pucihar G, Pavlovec M, et al. The effect of high frequency electric pulses on muscle contractions and antitumor efficiency in vivo for a potential use in clinical electrochemotherapy. Bioelectrochemistry. 2005;65(2):121-128.10.1016/j.bioelechem.2004.07.00415713562Search in Google Scholar

[11] Mir LM. Therapeutic perspectives of in vivo cell electropermeabilization. Bioelectrochemistry. 2001;53(1):1-10.10.1016/S0302-4598(00)00112-4Search in Google Scholar

[12] Adeyanju OO, Al-Angari HM, Sahakian AV. The optimization of needle electrode number and placement for irreversible electroporation of hepatocellular carcinoma. Radiol Oncol. 2012;46(2):126-135.10.2478/v10019-012-0026-y347294023077449Search in Google Scholar

[13] Corovic S, Lackovic I, Sustaric P, et al. Modeling of electric field distribution in tissues during electroporation. Biomed Eng Online. 2013;12:16.10.1186/1475-925X-12-16361445223433433Search in Google Scholar

[14] Dunki-Jacobs EM, Philips P, Martin RC. Evaluation of resistance as a measure of successful tumor ablation during irreversible electroporation of the pancreas. J Am Coll Surg. 2014;218(2):179-187.10.1016/j.jamcollsurg.2013.10.01324315888Search in Google Scholar

[15] Moisescu MG, Radu M, Kovacs E, et al. Changes of cell electrical parameters induced by electroporation. A dielectrophoresis study. Biochim Biophysi Acta (BBA)-Biomembranes. 2013;1828(2):365-372.10.1016/j.bbamem.2012.08.03023000110Search in Google Scholar

[16] Kranjc M, Bajd F, Serša I, Miklavčič D. Magnetic resonance electrical impedance tomography for measuring electrical conductivity during electroporation. Physiol Meas. 2014;35(6):985-986.10.1088/0967-3334/35/6/98524844299Search in Google Scholar

[17] Pavlin M, Kandušer M, Reberšek M, et al. Effect of cell electroporation on the conductivity of a cell suspension. Biophys J. 2005;88:4378-4390.10.1529/biophysj.104.048975130566515792975Search in Google Scholar

[18] Cukjati D, Batiuskaite D, André F, et al. Real time electroporation control for accurate and safe in vivo non-viral gene therapy. Bioelectrochemistry. 2007;70(2):501-507.10.1016/j.bioelechem.2006.11.00117258942Search in Google Scholar

[19] Glahder J, Norrild B, Persson MB, Persson BR. Transfection of HeLa-cells with pEGFP plasmid by impedance power-assisted electroporation. Biotechnol Bioeng. 2005;92(3):267-276.10.1002/bit.2042616161165Search in Google Scholar

[20] Marty M, Sersa G, Garbay JR, et al. Electrochemotherapy–An easy, highly effective and safe treatment of cutaneous and subcutaneous metastases: Results of ESOPE (European Standard Operating Procedures of Electrochemotherapy) study. Eur J Cancer Supplements. 2006;4(11):3-13.10.1016/j.ejcsup.2006.08.002Search in Google Scholar

[21] Khorasani A, Firoozabadi SM, Shankayi Z. Finite Element Analysis of Tissue Conductivity during High-frequency and Low-voltage Irreversible Electroporation. Iranian J Med Phys. 2017;14(3):135-140.Search in Google Scholar

[22] Čorović S, Pavlin M, Miklavčič D. Analytical and numerical quantification and comparison of the local electric field in the tissue for different electrode configurations. Biomed Eng Online. 2007;6:37.10.1186/1475-925X-6-37210005817937793Search in Google Scholar

[23] Shankayi Z, Firoozabadi M, Hassan Z. Comparison of low voltage amplitude electrochemotherapy with 1 Hz and 5 kHz frequency in volume reduction of mouse mammary tumor in Balb/c mice. Koomesh. 2012;13(4):486-490.Search in Google Scholar

[24] Shankayi Z, Firoozabadi SMP, Saraf HZ. The Endothelial Permeability Increased by Low Voltage and High Frequency Electroporation. J Biomed Phys Eng. 2013;3(3):87-92.Search in Google Scholar

[25] Sano MB, Neal RE, Garcia PA, et al. Towards the creation of decellularized organ constructs using irreversible electroporation and active mechanical perfusion. Biomed Eng Online. 2010;9:83.10.1186/1475-925X-9-83301838021143979Search in Google Scholar

[26] Garcia PA, Rossmeisl JH, Neal RE, et al. Intracranial nonthermal irreversible electroporation: in vivo analysis. J Membr Biol. 2010;236(1):127-136.10.1007/s00232-010-9284-z20668843Search in Google Scholar

[27] Ivorra A, Rubinsky B. In vivo electrical impedance measurements during and after electroporation of rat liver. Bioelectrochemistry. 2007;70(2):287-295.10.1016/j.bioelechem.2006.10.00517140860Search in Google Scholar

[28] Garcia PA, Davalos RV, Miklavcic D. A numerical investigation of the electric and thermal cell kill distributions in electroporation-based therapies in tissue. PloS one. 2014;9(8):e103083.10.1371/journal.pone.0103083413051225115970Search in Google Scholar

[29] Zhao Y, Bhonsle S, Dong S, et al. Characterization of conductivity changes during high-frequency irreversible electroporation for treatment planning. IEEE Trans Biomed Eng. 2017;65(8):1810-1819.10.1109/TBME.2017.277810129989932Search in Google Scholar

[30] Berkenbrock JA, Machado RG, Suzuki DOH. Electrochemotherapy Effectiveness Loss due to Electric Field Indentation between Needle Electrodes: A Numerical Study. J Healthcare Eng. 2018;2018:6024635.10.1155/2018/6024635605124730057732Search in Google Scholar

[31] Lackovic I, Magjarevic R, Miklavcic D. Three-dimensional finite-element analysis of joule heating in electrochemotherapy and in vivo gene electrotransfer. IEEE Trans Dielectrics Electrical Insulation. 2009;16(5):1338-1347.10.1109/TDEI.2009.5293947Search in Google Scholar

eISSN:
1898-0309
Langue:
Anglais
Périodicité:
4 fois par an
Sujets de la revue:
Medicine, Biomedical Engineering, Physics, Technical and Applied Physics, Medical Physics