À propos de cet article

Citez

1. Zayas, T.P., Geissler, G. & Hernandez, F. (2007). Chemical oxygen demand reduction in coffee wastewater through chemical flocculation and advanced oxidation processes. J. Environ. Sci. 19, 300–305. DOI: 10.1016/S1001-0742(07)60049-7.10.1016/S1001-0742(07)60049-7Open DOISearch in Google Scholar

2. Benincá, C., Vargas, F.T., Martins, M.L., Gonçalves, F.F., Vargas, R.P., Freire, F.B. & Zanoelo, E.F. (2016). Removal of clomazone herbicide from a synthetic effluent by electrocoagulation. Water Sci. Technol. 73, 2944–2952. DOI: 10.2166/wst.2016.133.10.2166/wst.2016.13327332840Open DOISearch in Google Scholar

3. Thirugananasambandham, K. & Sivakumar V. (2015). Application of D-optimal design to extract the pectin from lime bagasse using microwave green irradiation. International J. Biolog. Macromol., 72, 1351–1357. DOI: 10.1016/j.ijbiomac.2014.09.054.10.1016/j.ijbiomac.2014.09.05425451754Open DOISearch in Google Scholar

4. Thirugananasambandham, K., Kandasamy, S., Sivakumar V., Kiran kumar, R. & Mohanavelu, R. (2015). Modeling of by-product recovery and performance evaluation of Electro-Fenton treatment technique to treat poultry wastewater. J. Taiwan Instit. Chem. Engine. 46, 89–97. https://doi.org/10.1016/j.jtice.2014.09.004.10.1016/j.jtice.2014.09.004Open DOISearch in Google Scholar

5. Abdel, S.G.A., Baraka, A.M., Omran, K.A. & Mokhtar, M.M. (2012). Removal of Some Pesticides from the Simulated Waste Water by Electrocoagulation Method Using Iron Electrodes. Int. J. Electrochem. 7, 6654–6665.10.1016/S1452-3981(23)15737-3Search in Google Scholar

6. Aitbara, A., Cherifi, M., Hazourli, S. & Leclerc, J.P. (2016). Continuous treatment of industrial dairy effluent by electrocoagulation using aluminum electrodes. Desalin. Water. Treat. 57, 3395–3404. DOI: 10.1080/19443994.2014.989411.10.1080/19443994.2014.989411Open DOISearch in Google Scholar

7. Mollah, M.Y.A., Morkovsky, P., Gomes, J.A.G., Kesmez, M., Parga, J. & Cocke, D.L. (2004). Fundamentals, present and future perspectives of electrocoagulation. J. Hazard. Mater. 114, 199–210. DOI: 10.1016/j.jhazmat.2004.08.009.10.1016/j.jhazmat.2004.08.00915511592Open DOISearch in Google Scholar

8. Moradi, M., Eslami, A. & Ghanbari, F. (2016). Direct Blue 71 removal by electrocoagulation sludge recycling in photo-Fenton process: response surface modeling and optimization. Desalin. Water. Treat. 57, 4659–4670. DOI: 10.1080/19443994.2014.995714.10.1080/19443994.2014.995714Search in Google Scholar

9. Bui, H.M. (2016). Modeling the removal of Sunfix Red S3B from aqueous solution by electrocoagulation process using artificial neural network. J. Serb. Chem. Soc. 81, 959–974. DOI: 10.2298/JSC160108032M.10.2298/JSC160108032Open DOISearch in Google Scholar

10. Heffron, J., Marhefke, M. & Mayer, B.K. (2016). Removal of trace metal contaminants from potable water by electrocoagulation. Sci. Rep. 6, 1–9. DOI: 10.1038/srep28478.10.1038/srep28478491484027324564Search in Google Scholar

11. Daneshvar, N., Khataee, A.R., Amani Ghadim, A.R. & Rasoulifard, M.H. (2007). Decolorization of C.I. Acid Yellow 23 solution by electrocoagulation process: Investigation of operational parameters and evaluation of specific electrical energy consumption (SEEC). J. Hazard. Mater. 148, 566–572. DOI: 10.1016/j.jhazmat.2007.03.028.10.1016/j.jhazmat.2007.03.02817428605Open DOISearch in Google Scholar

12. Gengec, E., Kobya, M., Demirbas, E., Akyol, A. & Oktor, K. (2012). Optimization of baker’s yeast wastewater using response surface methodology by electrocoagulation. Desalination 286, 200–209. DOI: 10.1016/j.desal.2011.11.023.10.1016/j.desal.2011.11.023Open DOISearch in Google Scholar

13. Thirugananasambandham, K. & Sivakumar V. (2017). Microwave assisted extraction process of betalain from dragon fruit and its antioxidant activities, J. Saudi Soc. Agric. Sci. 16, 41–48. http://dx.doi.org/10.1016/j.jssas.2015.02.001. ISSN: 1658-077X.10.1016/j.jssas.2015.02.001.ISSN:1658-077XOpen DOISearch in Google Scholar

14. Thirugananasambandham, K. & Sivakumar, V. (2016). Enhancement of shelf life of coriandrum sativum leaves using vacuum drying process: Modeling and Optimization. JJ. Saudi Soc. Agric. Sci., 15, 195–201. https://doi.org/10.1016/j.jssas.2014.12.001.10.1016/j.jssas.2014.12.001Open DOISearch in Google Scholar

15. Thirugananasambandham, K., Sivakumar, V. & Prakash Maran, J. (2015). Evaluation of an electrocoagulation process for the treatment of bagasse -based pulp and paper industry wastewater. Environmental Progress and Sustainable Energy Volume 34, 411–419, 2015. DOI 10.1002/ep.12001.10.1002/ep.12001Open DOISearch in Google Scholar

16. Caixeta, L.B., Pedrosa, E.M.R., Guimarães, L.M.P., Barros, P.A. & Rolim, M.M. Changes in soil and nematode community after sugarcane harvest and vinasse application. Nematropica 41 (2011) 271–280. https://doi.org/10.1016/j.energy.2018.02.102.10.1016/j.energy.2018.02.102Open DOISearch in Google Scholar

17. Thirugananasambandham, K. & Sivakumar, V. (2015). Eco-friendly approach of copper (II) ion adsorption on to cotton seed cake and its characterization: Simulation and Validation. J. Taiwan Instit. Chem. Engin., 50, 198–204. https://doi.org/10.1016/j.jtice.2014.12.002.10.1016/j.jtice.2014.12.002Open DOISearch in Google Scholar

18. Prakash Maran, J., Sivakumar, V., Thirugananasambandham, K. & Sridhar, R. (2013). Multi-response analysis and optimization of extraction of biologically active compounds from pulp of Indian jamun fruit. Food Sci. Biotech. 23, 9–14. https://link.springer.com/article/10.1007/s10068-014-0002-y.10.1007/s10068-014-0002-ySearch in Google Scholar

19. Barros, V.G., Duda, R.M. & Oliveira, R.A., Biomethane production from vinasse in upflow anaerobic sludge blanket reactors inoculated with granular sludge, Brazilian J. Microb. 47 (2016) 628–639. https://doi.org/10.1016/j.jenvman.2016.05.06110.1016/j.jenvman.2016.05.06127316625Open DOISearch in Google Scholar

20. Thirugnanasambandham, K., Siva Kumar, V. & Shine, K. (2016). Studies On Treatment Of Egg Processing Industry Wastewater Using Electrocoagulation Method: Optimization Using Response Surface Methodology. Desalination and Water Treatment. 57, 21721–21729. https://doi.org/10.1080/19443994.2015.1129504.10.1080/19443994.2015.1129504Open DOISearch in Google Scholar

21. Christofoletti, C.A., Escher, J.P., Correia, J.E., Marinho, J.F.U. & Fontanetti, C.S. (2013). Sugarcane vinasse: environmental implications of its use. Waste Manag. 33 2752–2761. https://doi.org/10.1016/j.chemosphere.2018.02.179.10.1016/j.chemosphere.2018.02.17929524822Open DOISearch in Google Scholar

22. Thirugananasambandham, K. & Sivakumar, V. (2015). Removal of eco-toxic matters from grey wastewater using Electro-Fenton treatment technique-modeling and optimization. Process Safety and Environmental Protection, 95, 60–68. http://dx.doi.org/10.1016/j.psep.2015.02.001.10.1016/j.psep.2015.02.001Open DOISearch in Google Scholar

23. Alves, P.R.L., Luz, T.N., Sousa, J.P. & Cardoso, E.J.B.N., Ecotoxicological characterization of sugarcane vinasses when applied to tropical soils, Sci. Total Environ. 526 (2015), 222–232. https://doi.org/10.1016/j.scitotenv.2018.02.02910.1016/j.scitotenv.2018.02.02929467086Open DOISearch in Google Scholar

24. Thirugananasambandham, K., Sivakumar, V. & Prakash Maran, J. (2014). Modeling and investigation of submerged fermentation process to produce extracellular polysaccharide using lactobacillus confusus, Carbohydrate polymers. 114, 43–47. doi: 10.1016/j.carbpol.2014.07.067.10.1016/j.carbpol.2014.07.06725263862Open DOISearch in Google Scholar

25. Zhi, G., Xue, Y., Chanhee, B., Suiyi, Z., Ying, L., Wei, F., Mingxin, H., Menachem Elimelech & Xia Yang, Self-cleaning anti-fouling hybrid ultrafiltration membranes via side chain grafting of poly(aryl ether sulfone) and titanium dioxide. J. Membrane Sci. 29 (2017) 1–10. https://doi.org/10.1016/j.cej.2018.02.088.10.1016/j.cej.2018.02.088Open DOISearch in Google Scholar

26. Thirugananasambandham, K., Sivakumar, V., Prakash Maran J. & Kandasamy, S. (2014). Application of response surface methodology for optimization of chemical coagulation process to treat rice mill wastewater. Environ. Sci.: Indian J., 9, 237–247.Search in Google Scholar

27. Thirugnanasambandham, K. & Siva Kumar, V. (2015). Enzymatic catalysis treatment method of meat industry wastewater using lacasse: Modelling and Optimisation, Journal of Environmental Health Science and Engineering. 13, 86–92, DOI: 10.1186/s40201-015-0239-2.10.1186/s40201-015-0239-2468707026697187Open DOISearch in Google Scholar

28. Thirugnanasambandham, K. & Siva Kumar, V. (2016). Modeling and Optimization Of Treatment Of Milk Industry Wastewater Using Chitosan–Zinc Oxide Nanocomposite, Desalination and Water Treatment. 57, 18630–18638. https://doi.org/10.1080/19443994.2015.1102089.10.1080/19443994.2015.1102089Open DOISearch in Google Scholar

29. Cardona, C., Machuca-Martínez, F. & Cabrales, N.M. (2013). Treatment of vinasse by using electro-dissolution and chemical flocculation, Ingeniería y Competitividad. 15, 191–200. https://doi.org/10.1016/j.watres.2017.11.057.10.1016/j.watres.2017.11.05729197755Open DOISearch in Google Scholar

30. Paz-Pino, O.L., Barba, L.E. & Cabrales, N.M. (2014). Vinasse treatment by coupling of electro-dissolution, hetero-coagulation and anaerobic digestion, Dyna rev.fac.nac.minas. . 8, 187–195. https://doi.org/10.1016/j.compchemeng.2018.01.003.10.1016/j.compchemeng.2018.01.003Search in Google Scholar

31. Liu, B., Qu, F., Liang, H., Gan, Z., Yu, G. & Bruggen, B. (2017). Algae-laden water treatment using ultrafiltration: Individual and combined fouling effects of cells, debris, extra-cellular and intracellular organic matter, J. Membrane Sci. 528. 178–186. https://doi.org/10.1016/j.chemosphere.2017.11.051.10.1016/j.chemosphere.2017.11.05129874757Open DOISearch in Google Scholar

32. Delcolle, R. (2010). Projeto e manufatura de membranas cerâmicas via prensagem isostática para separação de emulsões óleo vegetal/água por microfiltração tangencial, Ph.D. Thesis, Mechanical Engineering Post-Graduation Program, Mechanical Engineering Department, University of São Paulo, São Paulo, Brazil. https://doi.org/10.1016/j.biotechadv.2017.07.003.10.1016/j.biotechadv.2017.07.00328694179Open DOISearch in Google Scholar

33. Moraes, B.S., Junqueira, T.L., Pavanello, L.G., Cavalett, O., Mantelatto, P.E., Bonomi, A. & Zaiat, M. Anaerobic digestion of vinasse from sugarcane biorefineries in Brazil from energy, environmental, and economic perspectives: Profit or expense?. Appl. Energy. 113 (2014). 825–835. https://doi.org/10.1016/j.chemosphere.2017.01.070.10.1016/j.chemosphere.2017.01.07028135682Open DOISearch in Google Scholar

eISSN:
1899-4741
Langue:
Anglais
Périodicité:
4 fois par an
Sujets de la revue:
Industrial Chemistry, Biotechnology, Chemical Engineering, Process Engineering