À propos de cet article

Citez

1. Praca zbiorowa. (1956). Technologia Związków Azotowych, tom II. Część I Kwas azotowy. PWT Warszawa, 35–182 [in Polish].Search in Google Scholar

2. Ullman’s Encyclopedia of Industrial Chemistry (2002) Wiley-VCH Verlag GmbH & Co. KGaA. DOI: 10.1002/14356007.a17_293.10.1002/14356007.a17_293Open DOISearch in Google Scholar

3. Schmidt-Szałowski, K., Szafran, M., Bobryk, E. & Sentek, J. (2013) Technologia Chemiczna. Przemysł Nieorganiczny. PWN, 238–242 [in Polish].Search in Google Scholar

4. Moszowski, B. & Wolff, E. (2013). Experience gained during the mechanical and technological start-up of the nitric acid production plant. Przem. Chem. 92, 2207–2210. [in Polish].Search in Google Scholar

5. Marret, S. & du Chatelier, L. (1998). Recent advances in catalyst technology used in nitric acid production. The Fertiliser Society Proceedings No. 413.Search in Google Scholar

6. Reference Document on Best Available Techniques for the Manufacture of Large Volume Inorganic Chemicals – Ammonia, Acids and Fertilisers, Chapter 3 Nitric Acid, European Commission Document (2007). http://eippcb.jrc.esSearch in Google Scholar

7. Perez-Ramirez, J., Kapteijn, F., Schoffel, K. & Moulijn, J.A. (2003). Formation and control of N2O in nitric acid production Where do we stand today? Appl. Catal. B 44 117–151. DOI: 10.1016/S0962-3373(03)00026-2.10.1016/S0962-3373(03)00026-2Open DOISearch in Google Scholar

8. Kay, O. & Buennagel, T. (2016) Targeting improving performance and conversion efficiency in nitric acid plants. International Fertiliser Society Proceedings No. 787.Search in Google Scholar

9. Najlepsze dostępne techniki (BAT). Wytyczne dla Branży Chemicznej w Polsce. Przemysł Wielkotonażowych Chemikaliów Nieorganicznych, Amoniaku, Kwasów i Nawozów Sztucznych Wersja II, Ministerstwo Środowiska, (2005) [in Polish]. http://www.pipc.org.pl/pl/download/bat/branza_chemiczna/2005-09-29/nawozy_II.pdfSearch in Google Scholar

10. Abbasfard, H., Ghanbari, M., Ghasemi, A., Ghahraman, G., Jokar, S.M. & Rahimpour, M.R. (2014) CFD modelling of flow mal-distribution in an industrial ammonia oxidation reactor: A case study. Applied Thermal Engineering, 67, 223–229. DOI: 10.1016/j.applthermaleng.2014.03.035.10.1016/j.applthermaleng.2014.03.035Search in Google Scholar

11. Wen, Z. & Petera, J. (2015) CFD Numerical Simulation of Hydrodynamics in a Rotor-Stator Reactor for Biodiesel Synthesis. J. Appl. Mathem. Physics, 3, 997–1002. DOI: http://dx.doi.org/10.4236/jamp.2015.38122.10.4236/jamp.2015.38122Open DOISearch in Google Scholar

12. Udaya Bhaskar, K., Rama Murthy, Y., Ravi Raju, M., Tiwari, S., Srivastava, J.K. & Ramakrishnan, N. (2007) CFD simulation and experimental validation studies on hydrocyclone Min. Engin. 20, 60–71. DOI: 10.1016/jmineng.2006.04.012.10.1016/jmineng.2006.04.012Open DOISearch in Google Scholar

13. Zhang, N., Lu, B., Wang, W. & Li, J. (2010) 3D CFD simulation on hydrodynamics of a 150 MWe circulating fluidized bed boiler. Chem. Engine. J. 162, 821–828, DOI: 10.1016/j.cej.2010.06.033.10.1016/j.cej.2010.06.033Open DOISearch in Google Scholar

14. Kosmadakis, G.M., Rakopoulos, C.D., Demuynck, J., De Paepe, M. & Verhelst, S. (2012) CFD modeling and experimental study of combustion and nitric oxide emissions in hydrogen-fueled spark-ignition engine operating in a very wide range of EGR rates. Int. J. Hydrogen Energy, 37, 10917–10934. DOI: 10.1016/ijhydene.2012.04.067.10.1016/ijhydene.2012.04.067Open DOISearch in Google Scholar

15. Ruszak, M, Inger, M., Wilk, M., Nieścioruk, J., Saramok, M., Kowalik, W., Rajewski, J., Wajman, T., Kacprzak, W. & Tadasiewicz, D. (2017). The application of RANS CFD for design of SNCR technology for a pulverized coal-fired boiler. Polish J. Chem. Technol., 19, 2, 101–106. DOI: 10.1515pjct-2017-0035.10.1515/pjct-2017-0035Search in Google Scholar

eISSN:
1899-4741
Langue:
Anglais
Périodicité:
4 fois par an
Sujets de la revue:
Industrial Chemistry, Biotechnology, Chemical Engineering, Process Engineering