Accès libre

The influence of the chain length and the functional group steric accessibility of thiols on the phase transfer efficiency of gold nanoparticles from water to toluene

À propos de cet article

Citez

1. Murphy, C.J., Sau, T.K., Gole, A.M., Orendorff, C.J., Gao, J., Gou, L., Hunyadi, S.E. & Li, T. (2005). Anisotropic Metal Nanoparticles: Synthesis, Assembly, and Optical Applications. J. Phys. Chem. B 109(29), 13857-13870. DOI: 10.1021/jp0516846.10.1021/jp051684616852739Search in Google Scholar

2. Ko, S.H., Park, I., Pan, H., Grigoropoulos, C.P., Pisano, A.P., Luscombe, C.K. & Frèchet, J.M.J. (2007). Direct Nanoimprinting of Metal Nanoparticles for Nanoscale Electronics Fabrication, Nano Lett. 7(7), 1869-1877. DOI: 10.1021/nl070333v.10.1021/nl070333v17547465Search in Google Scholar

3. Fendler, J.H. (2001). Chemical Self-assembly for Electronic Applications, Chem. Mater. 13(10), 3196-3210. DOI: 10.1021/cm010165m.10.1021/cm010165mSearch in Google Scholar

4. Maillard, M., Giorgio, S. & Pileni, M.P. (2002). Silver Nanodisks, Advanced Mat. 14(15), 1084-1086. DOI: 10.1002/1521-4095(20020805)14:15<1084.Search in Google Scholar

5. Yang, Y., Ouyang, J., Ma, L., Tseng, J.H.R. & Chu, C.W. (2006). Electrical Switching and Bistability in Organic/Polymeric Thin Films and Memory Devices, Adv. Funct. Mater. 16(8), 1001-1014. DOI: 10.1002/adfm.200500429.10.1002/adfm.200500429Search in Google Scholar

6. Tsoukalas, D. (2009). From silicon to organic nanoparticles memory devices. Phil. Trans. R. Soc. A 367(1905), 4169-4179. DOI: 10.1098/rsta.2008.0280.10.1098/rsta.2008.028019770141Search in Google Scholar

7. Prakash, A., Ouyang, J., Lin, J.L. & Yanga, Y. (2006). Polymer memory device based on conjugated polymer and gold nanoparticles. Appl. Phys. 100(054309). http://dx.doi. org/10.1063/1.233725210.1063/1.2337252Search in Google Scholar

8. Manna, A., Imae, T., Aoi, K., Okada, M. & Yogo, T. (2001). Synthesis of dendrimer-passivated noble metal nanoparticles in a polar medium: comparison of size between silver and gold particles. Chem. Mater. 13(5), 1674-1681. DOI: 10.1021/ cm000416b.10.1021/cm000416bSearch in Google Scholar

9. Zhang, J.L., Han, B.X., Liu, M.H., Liu D.X., Dong, Z.X., Liu, J., Li, D., Wang, J., Dong, B.Z., Zhang, H. &. Rong, L.X. (2003). Ultrasonication-Induced Formation of Silver Nanofi bers in Reverse Micelles and Small-Angle X-ray Scattering Studies, J. Phys. Chem. B 107(16), 3679-3683. DOI: 10.1021/jp026738f.10.1021/jp026738fSearch in Google Scholar

10. McLeod, M.C., McHenry, R.S., Beckman, E.J. & Roberts, C.B. (2003). Synthesis and Stabilization of Silver Metallic Nanoparticles and Premetallic Intermediates in Perfl uoropolyether/ CO2 Reverse Micelle Systems. J. Phys. Chem. B 107(12), 2693-2700. DOI: 10.1021/jp0218645.10.1021/jp0218645Search in Google Scholar

11. Brust, M., Walker, M., Bethell, D., Schiffrin, D.J. & Whyman, R. (1994). Synthesis of Thiol-derivatised Gold Nanoparticles in a Two-phase Liquid-Liquid System. J. Chem. Soc. Chem. Commun. 801-802. DOI: 10.1039/C39940000801.10.1039/C39940000801Search in Google Scholar

12. Goulet, P.J.G., Bourret, G.R. & Lennox, R.B. (2012). Facile Phase Transfer of Large, Water-Soluble Metal Nanoparticles to Nonpolar Solvents, Langmuir 28(5), 2909−2913. DOI: 10.1021/la2038894.10.1021/la203889422283327Search in Google Scholar

13. Chandradass, J. & Kim, K.H. (2010). Synthesis and characterization of CuAl2O4 nanoparticles via a reverse microemulsion method. J. Ceram. Process. Res. 11(2), 150-153.Search in Google Scholar

14. Gao, D., He, R., Carraro, C., Howe, R.T, Yang, P. & Maboudian, R. (2005). Selective Growth of Si Nanowire Arrays via Galvanic Displacement Processes in Water-in-Oil Microemulsions, J. Am. Chem. Soc.127(13), 4574-4575. DOI: 10.1021/ja043645y.10.1021/ja043645y15796513Search in Google Scholar

15. Eastoe, J., Hollamby, M.J. & Hudson, L. (2006). Recent advances in nanoparticle synthesis with reversed micelles, Adv. Colloid Interfac. 128-130, 5-15. DOI:10.1016/j.cis.2006.11.009.10.1016/j.cis.2006.11.00917254535Search in Google Scholar

16. Shon, Y.S., Chuc, S. & Voundi, P. (2009). Stability of tetraoctylammonium bromide-protected gold nanoparticles: Effects of anion treatments, Colloids and Surfaces A: Physicochem. Eng. Aspects 352(1-3), 12-17. DOI:10.1016/j. colsurfa.2009.09.037.Search in Google Scholar

17. Frenkel, A.I., Nemzer, S., Pister, I., Soussan, L., Harris, T., Sun, Y. & Rafailovich, M.H. (2005). Size-controlled synthesis and characterization of thiol-stabilized gold nanoparticles. J. Chem. Phys. 123(18), 184701. DOI: 10.1063/1.212666610.1063/1.212666616292915Search in Google Scholar

18. Wang, X., Xu, S., Zhou, J. & Xu, W. (2010). A rapid phase transfer method for nanoparticles using alkylamine stabilizers. J. Colloid Interf. Sci. 348(1), 24-28. DOI:10.1016/j. jcis.2010.03.068.Search in Google Scholar

19. Kumar, A., Mukherjee, P., Guha, A., Adyantaya, S.D., Mandale, A.B., Kumar, R. & Sastry, M. (2000). Amphoterization of colloidal gold particles by capping with valine molecules and their phase transfer from water to toluene by electrostatic coordination with fatty amine molecules. Langmuir 16(25), 9775-9783. DOI: 10.1021/la000886k.10.1021/la000886kSearch in Google Scholar

20. Gaponik, N., Talapin, D.V., Rogach, A.L., Eychmuler, A. & Weller, H. (2002). Effi cient phase transfer of luminescent thiol-capped nanocrystals: from water to nonpolar organic solvents, Nano Lett. 2(8), 803-806. DOI: 10.1021/nl025662w.10.1021/nl025662wSearch in Google Scholar

21. Lala, N., Lalbegi, S.P., Adyanthaya, S.D. & Sastry, M. (2001). Phase transfer of aqueous gold colloidal particles capped with inclusion complexes of cyclodextrin and alkanethiol molecules into chloroform. Langmuir 17(12), 3766-3768. DOI: 10.1021/la0015765.10.1021/la0015765Search in Google Scholar

22. Machunsky, S. & Peuker, U.A. (2007). Liquid-Liquid Interfacial Transport of Nanoparticles. Hindawi Publishing Corporation, Physical Separation in Science and Engineering. Article ID 34832, 7 pages. DOI:10.1155/2007/34832.10.1155/2007/34832Search in Google Scholar

23. Qian, H., Zhu, M., Andersen, U.N. & Jin, R. (2009). Facile, Large-Scale Synthesis of Dodecanethiol-Stabilized Au38. Clusters J. Phys. Chem. A 113(16), 4281-4284. DOI: 10.1021/jp810893w.10.1021/jp810893w268258519215111Search in Google Scholar

24. Grobelny, J., Delrio, F.W., Pradeep, N., Kim D.I., Hackley, V.A. & Cook, R.F. (2011). Methods in Molecular Biology. In S.E. McNeil (Ed.), Size measurement of nanoparticles using atomic force microscopy in Characterization of Nanoparticles Intended for Drug Delivery (pp. 71-82). vol. 697, Springer.Search in Google Scholar

25. Barrena, E., Ocal, C. & Salmeron, M. (2001). Structure and stability of tilted-chain phases of alkanethiols on Au (111). J. Chem. Phys. 114(9), 4210-4015. DOI: 10.1063/1.134667610.1063/1.1346676Search in Google Scholar

26. Schreiber, F. (2000). Structure and growth of self-assembling monolayers, Progress in Surface Science 65(5-8), 151-256. DOI:10.1016/S0079-6816(00)00024-1.10.1016/S0079-6816(00)00024-1Search in Google Scholar

eISSN:
1899-4741
ISSN:
1509-8117
Langue:
Anglais
Périodicité:
4 fois par an
Sujets de la revue:
Industrial Chemistry, Biotechnology, Chemical Engineering, Process Engineering