À propos de cet article

Citez

1. Rother, F. C., Rebello, W. F., Healy, M. J. F., Silva, M. M., Cabral, P. A. M., Vital, H. C., & Andrade, E. R. (2016). Radiological risk assessment by convergence methodology model in RDD scenarios. Risk Anal., 36(11), 2039–2046.10.1111/risa.12557Search in Google Scholar

2. Andrade, C. P., Souza, C. J., Camerini, E. S. N., Alves, I. S., Vital, H. C., Healy, M. J. F., & De Andrade, E. R. (2018). Support to triage and public risk perception considering long-term response to a Cs-137 radiological dispersive device scenario. Toxicol. Ind. Health, 34(6), 433–438.10.1177/0748233718762920Search in Google Scholar

3. Jeong, H., Park, M., Jeong, H., Hwang, W., Kim, E., & Han, M. (2013). Radiological risk assessment caused by RDD terrorism in an urban area. Appl. Radiat. Isot., 79, 1–4.10.1016/j.apradiso.2013.04.018Search in Google Scholar

4. Porter, K., & Lee, L. (2007). Radiological terrorism scenarios. Prehosp. Disaster Med., 22(6), 547.10.1017/S1049023X00005410Search in Google Scholar

5. Harper, F. T., Musolino, S. V., & Wente, W. B. (2007). Realistic radiological dispersal device hazard boundaries and ramifications for early consequence management decisions. Health Phys., 93(1), 1–16.10.1097/01.HP.0000264935.29396.6fSearch in Google Scholar

6. Mettler, F. A. Jr. (2005). Medical resources and requirements for responding to radiological terrorism. Health Phys., 89(5), 488–493.10.1097/01.HP.0000172143.37040.bdSearch in Google Scholar

7. Conklin, C., & Edwards, J. (2000). Selection of protective action guides for nuclear incidents. EPA. J. Hazard. Mater., 75(2/3), 131–144.10.1016/S0304-3894(00)00176-XSearch in Google Scholar

8. Timins, J. K., & Lipoti, J. A. (2004). Radiological terrorism. N. J. Med., 101(Suppl. 9), 66–75; quiz 75–76.Search in Google Scholar

9. Stone, R. (2002). Radiological terrorism. New effort aims to thwart dirty bombers. Science, 296(5576), 2117–2119.Search in Google Scholar

10. Homann, S. G., & Aluzzi, F. (2019). HotSpot Health Physics Codes Version 3.0 User’s Guide. Lawrence, CA, USA: Livermore National Laboratory.Search in Google Scholar

11. Yu, C. (2009). Preliminary report on operational guidelines developed for use in emergency preparedness and response to a radiological dispersal device incident. Chicago: Argonne National Laboratory.Search in Google Scholar

12. Pasquill, F. (1961). The estimation of the dispersion of windborne material. Meteorol. Mag., 90(1063), 33–41.Search in Google Scholar

13. Maillie, H. D., Simon, W., Watts, R. J., & Quinn, B. R. (1993). Determining person-years of life lost using the BEIR V method. Health Phys., 64(5), 461–466.10.1097/00004032-199305000-000018491595Search in Google Scholar

14. Maillie, H. D., & Jacobson, A. P. (1992). A graphical method of estimating fatal radiation-induced cancers using the BEIR V method. Health Phys., 63(3), 273–280.10.1097/00004032-199209000-000021644563Search in Google Scholar

15. ICRP. (1977). Implications of Commission recommendations that doses be kept as low as readily achievable. In A report of ICRP Committee 4 (pp. 2–3). Oxford. (ICRP Publication 22).Search in Google Scholar

16. Institute of Medicine. (1999). Follow-up of persons with known or suspected exposure to ionizing radiation. In Potential radiation exposure in military operations: Protecting the soldier before, during, and after (pp. 88–107). Washington, DC: The National Academies Press. Available from https://doi.org/10.17226/9454.10.17226/945425077192Search in Google Scholar

17. IAEA. (1996). Methods for estimating the probability of cancer from occupational radiation exposure. Vienna: International Atomic Energy Agency. (IAEATECDOC-870).Search in Google Scholar

18. INCa. (2018). Estimate/2018 – Cancer incidence in Brazil. Rio de Janeiro: Instituto Nacional de Câncer José Alencar Gomes da Silva.Search in Google Scholar

eISSN:
1508-5791
Langue:
Anglais
Périodicité:
4 fois par an
Sujets de la revue:
Chemistry, Nuclear Chemistry, Physics, Astronomy and Astrophysics, other