Accès libre

Magnetic Resonance Imaging of Surgical Implants Made from Weak Magnetic Materials

À propos de cet article

Citez

[1] Frollo, I., Andris, P., Gogola, D., Přibil, J., Valkovič, L., Szomolányi, P. (2012). Magnetic field variations near weak magnetic materials studied by magnetic resonance imaging techniques. IEEE Transaction onMagnetics, 48 (8), 2334-2339.10.1109/TMAG.2012.2191298Search in Google Scholar

[2] Marcon, P., Bartusek, K., Dokoupil, Z., Gescheidtova, E. (2012). Diffusion MRI: Mitigation of magnetic field inhomogeneities. Measurement Science Review, 12 (5), 205-212.10.2478/v10048-012-0031-8Search in Google Scholar

[3] Youtaka, I., Tmohiro, Y. (2005). History, present and future of diagnostic imaging: Magnetic resonance imaging (MRI). Japanisch-Deutsche MedizinischeBerichte, 50, 40-51.Search in Google Scholar

[4] Berry, E., Bulpitt, A.J. (2009). Fundamentals of MRI:An Interactive Learning Approach. CRC Press.Search in Google Scholar

[5] Keevil, S. (2001). Magnetic resonance imaging in medicine. Physic Education, 36, 476-485.10.1088/0031-9120/36/6/305Search in Google Scholar

[6] Durdík, Š., Babincová, M., Kontrišová, K., Bergemann, C., Babinec, P. (2013). Magnetic nanoparticles as contrast agents for magnetic resonance imaging. The General Science Journal, 1-8, http://gsjournal.net/.Search in Google Scholar

[7] Cicmanec, P. (1980). Basic Physics 2: Electricity andMagnetism. Bratislava: ALFA. (in Slovak)Search in Google Scholar

[8] Bjørnerud, A., Johansson, L. (2004). The utility of superparamagnetic contrast agents in MRI: Theoretical consideration and applications in the cardiovascular system. NMR in Biomedicine, 17, 465-477.10.1002/nbm.90415526351Search in Google Scholar

[9] Majewski, P., Thierry, B. (2007). Functionalized magnetite nanoparticles-synthesis, properties and bioapplications. Critical Reviews in Solid State andMaterials Sciences, 32, 203-215.10.1080/10408430701776680Search in Google Scholar

[10] Ma, Z., Liu, H. (2007). Synthesis an surface modification of magnetic particles for application in biotechnology and biomedicine. China Particuology, 5, 1-10.10.1016/j.cpart.2006.11.001Search in Google Scholar

[11] Štrbák, O., Kopčanský, P., Timko, M., Frollo, I. (2013). Single biogenic magnetite nanoparticle physical characteristics. A biological impact study. IEEE Transactions on Magnetics, 49 (1), 457-462.Search in Google Scholar

[12] Bartusek, K., Dokoupil, Z., Gescheidtova, E. (2006). Magnetic field mapping around metal implants using an asymmetric spin echo MRI sequence. MeasurementScience and Technology, 17 (12), 3293-3300.10.1088/0957-0233/17/12/015Search in Google Scholar

[13] Schenck, J.F. (1996). The role of magnetic susceptibility in magnetic resonance imaging: MRI magnetic compatibility of the first and second kinds. Medical Physics, 23 (6), 815-851.10.1118/1.5978548798169Search in Google Scholar

[14] Shellock, F.G. (2002). Biomedical implants and devices: Assessment of magnetic field interactions with a 3.0-Tesla MR system. Journal of MagneticResonance Imaging, 16, 721-732.Search in Google Scholar

eISSN:
1335-8871
Langue:
Anglais
Périodicité:
6 fois par an
Sujets de la revue:
Engineering, Electrical Engineering, Control Engineering, Metrology and Testing