À propos de cet article

Citez

Soper NJ, Brunt LM, Kerbl K. Laparoscopic general surgery. New England Journal of Medicine. 1994 Feb 10;330(6):409–19. https://doi.org/10.1056/NEJM199402103300608 SoperNJ BruntLM KerblK Laparoscopic general surgery New England Journal of Medicine 1994 Feb 10 330 6 409 19 https://doi.org/10.1056/NEJM199402103300608 10.1056/NEJM1994021033006088284008 Search in Google Scholar

Subramonian K, DeSylva S, Bishai P, Thompson P, Muir G. Acquiring surgical skills: a comparative study of open versus laparoscopic surgery. European Urology. 2004 Mar 1;45(3):346–51. https://doi.org/10.1016/j.eururo.2003.09.021 SubramonianK DeSylvaS BishaiP ThompsonP MuirG Acquiring surgical skills: a comparative study of open versus laparoscopic surgery European Urology 2004 Mar 1 45 3 346 51 https://doi.org/10.1016/j.eururo.2003.09.021 10.1016/j.eururo.2003.09.02115036681 Search in Google Scholar

Nagtegaal ID, van de Velde CJ, van der Worp E, Kapiteijn E, Quirke P, van Krieken J. Macroscopic evaluation of rectal cancer resection specimen: Clinical significance of the pathologist in quality control. Journal of Clinical Oncology. 2002;20(7):1729–34. https://doi.org/10.1200/JCO.2002.07.010 NagtegaalID van de VeldeCJ van der WorpE KapiteijnE QuirkeP van KriekenJ Macroscopic evaluation of rectal cancer resection specimen: Clinical significance of the pathologist in quality control Journal of Clinical Oncology 2002 20 7 1729 34 https://doi.org/10.1200/JCO.2002.07.010 10.1200/JCO.2002.07.01011919228 Search in Google Scholar

Kaczmarek BF, Sukumar S, Petros F, Trinh QD, Mander N, Chen R, Menon M, Rogers CG. Robotic ultrasound probe for tumor identification in robotic partial nephrectomy: Initial series and outcomes. International Journal of Urology. 2013 Feb;20(2):172–6. https://doi.org/10.1111/j.1442-2042.2012.03127.x KaczmarekBF SukumarS PetrosF TrinhQD ManderN ChenR MenonM RogersCG Robotic ultrasound probe for tumor identification in robotic partial nephrectomy: Initial series and outcomes International Journal of Urology 2013 Feb 20 2 172 6 https://doi.org/10.1111/j.1442-2042.2012.03127.x 10.1111/j.1442-2042.2012.03127.x22925445 Search in Google Scholar

Sound S, Okoh AK, Bucak E, Yigitbas H, Dural C, Berber E. Intraoperative tumor localization and tissue distinction during robotic adrenalectomy using indocyanine green fluorescence imaging: a feasibility study. Surgical Endoscopy. 2016 Feb 1;30(2):657–62. https://doi.org/10.1007/s00464-015-4256-0 SoundS OkohAK BucakE YigitbasH DuralC BerberE Intraoperative tumor localization and tissue distinction during robotic adrenalectomy using indocyanine green fluorescence imaging: a feasibility study Surgical Endoscopy 2016 Feb 1 30 2 657 62 https://doi.org/10.1007/s00464-015-4256-0 10.1007/s00464-015-4256-026198153 Search in Google Scholar

Beccani M, Di Natali C, Sliker LJ, Schoen JA, Rentschler ME, Valdastri P. Wireless tissue palpation for intraoperative detection of lumps in the soft tissue. IEEE Transactions on Biomedical Engineering. 2013 Aug 21;61(2):353–61. https://doi.org/10.1109/TBME.2013.2279337 BeccaniM Di NataliC SlikerLJ SchoenJA RentschlerME ValdastriP Wireless tissue palpation for intraoperative detection of lumps in the soft tissue IEEE Transactions on Biomedical Engineering 2013 Aug 21 61 2 353 61 https://doi.org/10.1109/TBME.2013.2279337 10.1109/TBME.2013.227933723974523 Search in Google Scholar

Escoto A, Bhattad S, Shamsil A, Sanches A, Trejos AL, Naish MD, Malthaner RA, Patel RV. A multi-sensory mechatronic device for localizing tumors in minimally invasive interventions. In2015 IEEE International Conference on Robotics and Automation (ICRA) 2015 May 26 (pp. 4742–4747). IEEE. https://doi.org/10.1109/ICRA.2015.7139858 EscotoA BhattadS ShamsilA SanchesA TrejosAL NaishMD MalthanerRA PatelRV A multi-sensory mechatronic device for localizing tumors in minimally invasive interventions In 2015 IEEE International Conference on Robotics and Automation (ICRA) 2015 May 26 4742 4747 IEEE https://doi.org/10.1109/ICRA.2015.7139858 10.1109/ICRA.2015.7139858 Search in Google Scholar

Gafford JB, Kesner SB, Degirmenci A, Wood RJ, Howe RD, Walsh CJ. A monolithic approach to fabricating low-cost, millimeter-scale multi-axis force sensors for minimally-invasive surgery. In2014 IEEE International Conference on Robotics and Automation (ICRA) 2014 May 31 (pp. 1419–1425). IEEE. https://doi.org/10.1109/ICRA.2014.6907038 GaffordJB KesnerSB DegirmenciA WoodRJ HoweRD WalshCJ A monolithic approach to fabricating low-cost, millimeter-scale multi-axis force sensors for minimally-invasive surgery In 2014 IEEE International Conference on Robotics and Automation (ICRA) 2014 May 31 1419 1425 IEEE https://doi.org/10.1109/ICRA.2014.6907038 10.1109/ICRA.2014.6907038 Search in Google Scholar

McKinley S, Garg A, Sen S, Kapadia R, Murali A, Nichols K, Lim S, Patil S, Abbeel P, Okamura AM, Goldberg K. A single-use haptic palpation probe for locating subcutaneous blood vessels in robot-assisted minimally invasive surgery. In2015 IEEE International Conference on Automation Science and Engineering (CASE) 2015 Aug 24 (pp. 1151–1158). IEEE. https://doi.org/10.1109/CoASE.2015.7294253 McKinleyS GargA SenS KapadiaR MuraliA NicholsK LimS PatilS AbbeelP OkamuraAM GoldbergK A single-use haptic palpation probe for locating subcutaneous blood vessels in robot-assisted minimally invasive surgery In 2015 IEEE International Conference on Automation Science and Engineering (CASE) 2015 Aug 24 1151 1158 IEEE https://doi.org/10.1109/CoASE.2015.7294253 10.1109/CoASE.2015.7294253 Search in Google Scholar

Ahn B, Kim Y, Oh CK, Kim J. Robotic palpation and mechanical property characterization for abnormal tissue localization. Medical & Biological Engineering & Computing. 2012 Sep 1;50(9):961–71. https://doi.org/10.1007/s11517-012-0936-2 AhnB KimY OhCK KimJ Robotic palpation and mechanical property characterization for abnormal tissue localization Medical & Biological Engineering & Computing 2012 Sep 1 50 9 961 71 https://doi.org/10.1007/s11517-012-0936-2 10.1007/s11517-012-0936-222772733 Search in Google Scholar

Guo J, Xiao B, Ren H. Compensating Uncertainties in Force Sensing for Robotic-Assisted Palpation. Applied Sciences. 2019 Jan;9(12):2573. https://doi.org/10.3390/app9122573 GuoJ XiaoB RenH Compensating Uncertainties in Force Sensing for Robotic-Assisted Palpation Applied Sciences 2019 Jan 9 12 2573 https://doi.org/10.3390/app9122573 10.3390/app9122573 Search in Google Scholar

Carrara N. An Internet resource for the calculation of the ‘Dielectric Properties of Body Tissues’ in the frequency range 10 Hz-100 GHz. Institute for Applied Physics, Florence. http://niremf.ifac.cnr.it/tissprop/1997. CarraraN An Internet resource for the calculation of the ‘Dielectric Properties of Body Tissues’ in the frequency range 10 Hz-100 GHz Institute for Applied Physics Florence http://niremf.ifac.cnr.it/tissprop/1997 Search in Google Scholar

Khalil SF, Mohktar MS, Ibrahim F. The theory and fundamentals of bioimpedance analysis in clinical status monitoring and diagnosis of diseases. Sensors. 2014 Jun;14(6):10895–928. https://doi.org/10.3390/s140610895 KhalilSF MohktarMS IbrahimF The theory and fundamentals of bioimpedance analysis in clinical status monitoring and diagnosis of diseases Sensors 2014 Jun 14 6 10895 928 https://doi.org/10.3390/s140610895 10.3390/s140610895411836224949644 Search in Google Scholar

Cheng Z, Davies BL, Caldwell DG, Mattos LS. A new venous entry detection method based on electrical bio-impedance sensing. Annals of Biomedical Engineering. 2018 Oct 15;46(10):1558–67. https://doi.org/10.1007/s10439-018-2025-7 ChengZ DaviesBL CaldwellDG MattosLS A new venous entry detection method based on electrical bio-impedance sensing Annals of Biomedical Engineering 2018 Oct 15 46 10 1558 67 https://doi.org/10.1007/s10439-018-2025-7 10.1007/s10439-018-2025-729675812 Search in Google Scholar

Naranjo-Hernández D, Reina-Tosina J, Min M. Fundamentals, recent advances, and future challenges in bioimpedance devices for healthcare applications. Journal of Sensors. 2019 Jul 15;2019. https://doi.org/10.1155/2019/9210258 Naranjo-HernándezD Reina-TosinaJ MinM Fundamentals, recent advances, and future challenges in bioimpedance devices for healthcare applications Journal of Sensors 2019 Jul 15 2019 https://doi.org/10.1155/2019/9210258 10.1155/2019/9210258 Search in Google Scholar

Yu D, Jun D, Qing Y, Jianxun Z. Development of a noninvasive electrical impedance probe for minimally invasive tumor localization. Physiological Measurement. 2015 Aug 3;36(9):1785. https://doi.org/10.1088/0967-3334/36/9/1785 YuD JunD QingY JianxunZ Development of a noninvasive electrical impedance probe for minimally invasive tumor localization Physiological Measurement 2015 Aug 3 36 9 1785 https://doi.org/10.1088/0967-3334/36/9/1785 10.1088/0967-3334/36/9/178526235651 Search in Google Scholar

Emran S, Lappalainen R, Kullaa AM, Myllymaa S. Concentric ring probe for bioimpedance spectroscopic measurements: design and ex vivo feasibility testing on pork oral tissues. Sensors. 2018 Oct;18(10):3378. https://doi.org/10.3390/s18103378 EmranS LappalainenR KullaaAM MyllymaaS Concentric ring probe for bioimpedance spectroscopic measurements: design and ex vivo feasibility testing on pork oral tissues Sensors 2018 Oct 18 10 3378 https://doi.org/10.3390/s18103378 10.3390/s18103378621076230308986 Search in Google Scholar

Cheng Z, Carobbio AL, Soggiu L, Migliorini M, Guastini L, Mora F, Fragale M, Ascoli A, Africano S, Caldwell D, Canevari FR. SmartProbe: a bioimpedance sensing system for head and neck cancer tissue detection. Physiological Measurement. 2020 Apr 23. https://doi.org/10.1088/1361-6579/ab8cb4 ChengZ CarobbioAL SoggiuL MiglioriniM GuastiniL MoraF FragaleM AscoliA AfricanoS CaldwellD CanevariFR SmartProbe: a bioimpedance sensing system for head and neck cancer tissue detection Physiological Measurement 2020 Apr 23 https://doi.org/10.1088/1361-6579/ab8cb4 10.1088/1361-6579/ab8cb432325435 Search in Google Scholar

Laufer S, Ivorra A, Reuter VE, Rubinsky B, Solomon SB. Electrical impedance characterization of normal and cancerous human hepatic tissue. Physiological Measurement. 2010 Jun 24;31(7):995. https://doi.org/10.1088/0967-3334/31/7/009 LauferS IvorraA ReuterVE RubinskyB SolomonSB Electrical impedance characterization of normal and cancerous human hepatic tissue Physiological Measurement 2010 Jun 24 31 7 995 https://doi.org/10.1088/0967-3334/31/7/009 10.1088/0967-3334/31/7/00920577035 Search in Google Scholar

Yang L, Liu W, Chen R, Zhang G, Li W, Fu F, Dong X. In vivo bioimpedance spectroscopy characterization of healthy, hemorrhagic and ischemic rabbit brain within 10 Hz-1 MHz. Sensors. 2017 Apr;17(4):791. https://doi.org/10.3390/s17040791 YangL LiuW ChenR ZhangG LiW FuF DongX In vivo bioimpedance spectroscopy characterization of healthy, hemorrhagic and ischemic rabbit brain within 10 Hz-1 MHz Sensors 2017 Apr 17 4 791 https://doi.org/10.3390/s17040791 10.3390/s17040791542206428387710 Search in Google Scholar

Ollmar S, Grant S. Nevisense: improving the accuracy of diagnosing melanoma. Melanoma management. 2016 Jun;3(2):93. https://doi.org/10.2217/mmt-2015-0004 OllmarS GrantS Nevisense: improving the accuracy of diagnosing melanoma Melanoma management 2016 Jun 3 2 93 https://doi.org/10.2217/mmt-2015-0004 10.2217/mmt-2015-0004609464930190877 Search in Google Scholar

O'rourke AP, Lazebnik M, Bertram JM, Converse MC, Hagness SC, Webster JG, Mahvi DM. Dielectric properties of human normal, malignant and cirrhotic liver tissue: in vivo and ex vivo measurements from 0.5 to 20 GHz using a precision open-ended coaxial probe. Physics in Medicine & Biology. 2007 Jul 18;52(15):4707. https://doi.org/10.1088/0031-9155/52/15/022 O'rourkeAP LazebnikM BertramJM ConverseMC HagnessSC WebsterJG MahviDM Dielectric properties of human normal, malignant and cirrhotic liver tissue: in vivo and ex vivo measurements from 0.5 to 20 GHz using a precision open-ended coaxial probe Physics in Medicine & Biology 2007 Jul 18 52 15 4707 https://doi.org/10.1088/0031-9155/52/15/022 10.1088/0031-9155/52/15/022 Search in Google Scholar

Halter RJ, Kim YJ. Toward microendoscopic electrical impedance tomography for intraoperative surgical margin assessment. IEEE Transactions on Biomedical Engineering. 2014 Jun 6;61(11):2779–86. https://doi.org/10.1109/TBME.2014.2329461 HalterRJ KimYJ Toward microendoscopic electrical impedance tomography for intraoperative surgical margin assessment IEEE Transactions on Biomedical Engineering 2014 Jun 6 61 11 2779 86 https://doi.org/10.1109/TBME.2014.2329461 10.1109/TBME.2014.2329461 Search in Google Scholar

Lee BR, Roberts WW, Smith DG, Ko HW, Epstein JI, Lecksell K, Partin AW. Bioimpedance: novel use of a minimally invasive technique for cancer localization in the intact prostate. The Prostate. 1999 May 15;39(3):213–8. https://doi.org/10.1002/(SICI)1097-0045(19990515)39:3<213::AID-PROS10>3.0.CO;2-8 LeeBR RobertsWW SmithDG KoHW EpsteinJI LecksellK PartinAW Bioimpedance: novel use of a minimally invasive technique for cancer localization in the intact prostate The Prostate 1999 May 15 39 3 213 8 https://doi.org/10.1002/(SICI)1097-0045(19990515)39:3<213::AID-PROS10>3.0.CO;2-8 10.1002/(SICI)1097-0045(19990515)39:3<213::AID-PROS10>3.0.CO;2-8 Search in Google Scholar

Cheng Z, Davies BL, Caldwell DG, Mattos LS. A venipuncture detection system for robot-assisted intravenous catheterization. In2016 6th IEEE International Conference on Biomedical Robotics and Biomechatronics (BioRob) 2016 Jun 26 (pp. 80–86). IEEE. ChengZ DaviesBL CaldwellDG MattosLS A venipuncture detection system for robot-assisted intravenous catheterization In 2016 6th IEEE International Conference on Biomedical Robotics and Biomechatronics (BioRob) 2016 Jun 26 80 86 IEEE Search in Google Scholar

Dai Y, Du J, Yang Q, Zhang J. Noninvasive electrical impedance sensor for in vivo tissue discrimination at radio frequencies. Bioelectromagnetics. 2014 Sep;35(6):385–95. https://doi.org/10.1002/bem.21854 DaiY DuJ YangQ ZhangJ Noninvasive electrical impedance sensor for in vivo tissue discrimination at radio frequencies Bioelectromagnetics 2014 Sep 35 6 385 95 https://doi.org/10.1002/bem.21854 10.1002/bem.21854 Search in Google Scholar

Cheng Z, Dall'Alba D, Foti S, Mariani A, Chupin TJ, Caldwell DG, Ferrigno G, De Momi E, Mattos LS, Fiorini P. Design and integration of electrical bio-impedance sensing in surgical robotic tools for tissue identification and display. Frontiers in Robotics and AI. 2019;6:55. https://doi.org/10.3389/frobt.2019.00055 ChengZ Dall'AlbaD FotiS MarianiA ChupinTJ CaldwellDG FerrignoG De MomiE MattosLS FioriniP Design and integration of electrical bio-impedance sensing in surgical robotic tools for tissue identification and display Frontiers in Robotics and AI 2019 6 55 https://doi.org/10.3389/frobt.2019.00055 10.3389/frobt.2019.00055 Search in Google Scholar

Cole KS, Cole RH. Dispersion and absorption in dielectrics I. Alternating current characteristics. The Journal of chemical physics. 1941 Apr;9(4):341–51. https://doi.org/10.1063/1.1750906 ColeKS ColeRH Dispersion and absorption in dielectrics I. Alternating current characteristics The Journal of chemical physics 1941 Apr 9 4 341 51 https://doi.org/10.1063/1.1750906 10.1063/1.1750906 Search in Google Scholar

Trebbels D, Fellhauer F, Jugl M, Haimerl G, Min M, Zengerle R. Online tissue discrimination for transcutaneous needle guidance applications using broadband impedance spectroscopy. IEEE Transactions on Biomedical Engineering. 2011 Nov 8;59(2):494–503. https://doi.org/10.1109/TBME.2011.2174990 TrebbelsD FellhauerF JuglM HaimerlG MinM ZengerleR Online tissue discrimination for transcutaneous needle guidance applications using broadband impedance spectroscopy IEEE Transactions on Biomedical Engineering 2011 Nov 8 59 2 494 503 https://doi.org/10.1109/TBME.2011.2174990 10.1109/TBME.2011.2174990 Search in Google Scholar

Grimnes S, Martinsen OG. Bioimpedance and bioelectricity basics. 2nd ed. Academic press; 2008. GrimnesS MartinsenOG Bioimpedance and bioelectricity basics 2nd ed. Academic press 2008 10.1016/B978-0-12-374004-5.00010-6 Search in Google Scholar

Štulík K, Amatore C, Holub K, Mareček V, Kutner WŁ. Microelectrodes. Definitions, characterization, and applications. Pure Appl. Chem. 2000;72(8):1483–92. https://doi.org/10.1351/pac200072081483 ŠtulíkK AmatoreC HolubK MarečekV Kutner Microelectrodes. Definitions, characterization, and applications Pure Appl. Chem 2000 72 8 1483 92 https://doi.org/10.1351/pac200072081483 10.1351/pac200072081483 Search in Google Scholar

Cheng Z, Dall'Alba D, Caldwell DG, Fiorini P, Mattos LS. Design and Integration of Electrical Bio-Impedance Sensing in a Bipolar Forceps for Soft Tissue Identification: A Feasibility Study. In International Conference on Electrical Bioimpedance 2019 Jun 9 (pp. 3–10). Springer, Singapore. https://doi.org/10.1007/978-981-13-3498-6_1 ChengZ Dall'AlbaD CaldwellDG FioriniP MattosLS Design and Integration of Electrical Bio-Impedance Sensing in a Bipolar Forceps for Soft Tissue Identification: A Feasibility Study In International Conference on Electrical Bioimpedance 2019 Jun 9 3 10 Springer, Singapore https://doi.org/10.1007/978-981-13-3498-6_1 10.1007/978-981-13-3498-6_1 Search in Google Scholar

Gu W, Lai W. A mixture theory for charged-hydrated soft tissues containing multi-electrolytes: Passive transport and swelling behaviors. Journal of Biomechanical Engineering. 1998;120(2):169–80. https://doi.org/10.1115/1.2798299 GuW LaiW A mixture theory for charged-hydrated soft tissues containing multi-electrolytes: Passive transport and swelling behaviors Journal of Biomechanical Engineering 1998 120 2 169 80 https://doi.org/10.1115/1.2798299 10.1115/1.279829910412377 Search in Google Scholar

Simard R, L'Ecuyer P. Computing the two-sided Kolmogorov-Smirnov distribution. Journal of Statistical Software. 2011 Mar 9;39(11):1–8. https://doi.org/10.18637/jss.v039.i11 SimardR L'EcuyerP Computing the two-sided Kolmogorov-Smirnov distribution Journal of Statistical Software 2011 Mar 9 39 11 1 8 https://doi.org/10.18637/jss.v039.i11 10.18637/jss.v039.i11 Search in Google Scholar

Salvador B, Franco E, Perdigones F, Quero JM. Fabrication process for inexpensive, biocompatible and transparent PCBs. Application to a flow meter. Microelectronic Engineering. 2017 Apr 5;173:6–12. https://doi.org/10.1016/j.mee.2017.03.007 SalvadorB FrancoE PerdigonesF QueroJM Fabrication process for inexpensive, biocompatible and transparent PCBs. Application to a flow meter Microelectronic Engineering 2017 Apr 5 173 6 12 https://doi.org/10.1016/j.mee.2017.03.007 10.1016/j.mee.2017.03.007 Search in Google Scholar

Fournier-Desseux A, Jossinet J. Assessment of 1-lead and 2-lead electrode patterns in electrical impedance endotomography. Physiological Measurement. 2005 Apr 4;26(4):337. https://doi.org/10.1088/0967-3334/26/4/001 Fournier-DesseuxA JossinetJ Assessment of 1-lead and 2-lead electrode patterns in electrical impedance endotomography Physiological Measurement 2005 Apr 4 26 4 337 https://doi.org/10.1088/0967-3334/26/4/001 10.1088/0967-3334/26/4/00115886430 Search in Google Scholar

Keshtkar A, Salehnia Z, Somi MH, Eftekharsadat AT. Some early results related to electrical impedance of normal and abnormal gastric tissue. Physica Medica. 2012 Jan 1;28(1):19–24. https://doi.org/10.1016/j.ejmp.2011.01.002 KeshtkarA SalehniaZ SomiMH EftekharsadatAT Some early results related to electrical impedance of normal and abnormal gastric tissue Physica Medica 2012 Jan 1 28 1 19 24 https://doi.org/10.1016/j.ejmp.2011.01.002 10.1016/j.ejmp.2011.01.00221334938 Search in Google Scholar

Mirtaheri P, Grimnes S, Martinsen ØG. Electrode polarization impedance in weak NaCl aqueous solutions. IEEE Transactions on Biomedical Engineering. 2005 Nov 21;52(12):2093–9. https://doi.org/10.1109/TBME.2005.857639 MirtaheriP GrimnesS MartinsenØG Electrode polarization impedance in weak NaCl aqueous solutions IEEE Transactions on Biomedical Engineering 2005 Nov 21 52 12 2093 9 https://doi.org/10.1109/TBME.2005.857639 10.1109/TBME.2005.85763916366232 Search in Google Scholar

Ruiz-Vargas A, Ivorra A, Arkwright JW. Design, construction and validation of an electrical impedance probe with contact force and temperature sensors suitable for in-vivo measurements. Scientific reports. 2018 Oct 4;8(1):1–1. https://doi.org/10.1038/s41598-018-33221-4 Ruiz-VargasA IvorraA ArkwrightJW Design, construction and validation of an electrical impedance probe with contact force and temperature sensors suitable for in-vivo measurements Scientific reports 2018 Oct 4 8 1 1 1 https://doi.org/10.1038/s41598-018-33221-4 10.1038/s41598-018-33221-4617225530287842 Search in Google Scholar

Gabriel S, Lau RW, Gabriel C. The dielectric properties of biological tissues: III. Parametric models for the dielectric spectrum of tissues. Physics in Medicine & Biology. 1996 Nov;41(11):2271. https://doi.org/10.1088/0031-9155/41/11/003 GabrielS LauRW GabrielC The dielectric properties of biological tissues: III. Parametric models for the dielectric spectrum of tissues Physics in Medicine & Biology 1996 Nov 41 11 2271 https://doi.org/10.1088/0031-9155/41/11/003 10.1088/0031-9155/41/11/0038938026 Search in Google Scholar

MacSween RN, Anthony PP, Scheuer PJ, editors. Pathology of the liver. Edinburgh: Churchill Livingstone; 1979 Sep 20. MacSweenRN AnthonyPP ScheuerPJ editors Pathology of the liver Edinburgh Churchill Livingstone 1979 Sep 20 Search in Google Scholar