À propos de cet article

Citez

1. World Health Organisation, Cardiovascular disease (CVDs), 2016. Available from: http://www.who.int/mediacentre/factsheets/fs317/en/#.Search in Google Scholar

2. Dubey G, Verma SK, Bahl VK. Primary percutaneous coronary intervention for acute ST elevation myocardial infarction: Outcomes and determinants of outcomes: A tertiary care center study from North India. Indian Heart J. 2017;69:294-298. doi: 10.1016/j.ihj.2016.11.322.10.1016/j.ihj.2016.11.322548538228648416Open DOISearch in Google Scholar

3. Choy SY, Mintz GS. What have we learned about plaque rupture in acute coronary syndromes? Curr Cardiol Rep. 2010;12:338-343. doi: 10.1007/s11886-010-0113-x.10.1007/s11886-010-0113-x20425160Open DOISearch in Google Scholar

4. Finn AV, Nakano M, Narula J, Kolodgie FD, Virmani R. Concept of vulnerable/unstable plaque. Arterioscler Thromb Vasc Biol. 2010;30:1282-1292. doi: 10.1161/ATVBAHA.108.179739.10.1161/ATVBAHA.108.17973920554950Open DOISearch in Google Scholar

5. Stone GW, Maehara A, Lansky AJ, et al. A prospective naturalhistory study of coronary atherosclerosis. N Engl J Med. 2011;364:226-235. doi: 10.1056/NEJMoa1002358.10.1056/NEJMoa100235821247313Open DOISearch in Google Scholar

6. Bentzon JF, Otsuka F, Virmani R, Falk E. Mechanisms of plaque formation and rupture. Circ Res. 2014;114:1852-1866. doi: 10.1161/CIRCRESAHA.114.302721.10.1161/CIRCRESAHA.114.30272124902970Open DOISearch in Google Scholar

7. Stefanadis C, Antoniou CK, Tsiachris D, Pietri P. Coronary Atherosclerotic Vulnerable Plaque: Current Perspectives. J Am Heart Assoc. 2017;6:e005543. doi: 10.1161/JAHA.117.005543.10.1161/JAHA.117.005543552404428314799Open DOISearch in Google Scholar

8. Benedek T, Gyöngyösi M, Benedek I. Multislice Computed Tomographic Coronary Angiography for Quantitative Assessment of Culprit Lesions in Acute Coronary Syndromes. Can J Cardiol. 2013;29:364-371. doi: 10.1016/j.cjca.2012.11.004.10.1016/j.cjca.2012.11.00423333164Search in Google Scholar

9. Giblett JP, Brown AJ, Keevil H, Jaworski C, Hoole SP, West NE. Implantation of bioresorbable vascular scaffolds following acute coronary syndrome is associated with reduced early neointimal growth and strut coverage. EuroIntervention. 2016;12:724-733. doi: 10.4244/EIJV12I6A117.10.4244/EIJV126117Open DOISearch in Google Scholar

10. Giannakopoulos TG, Avgerinos ED, Moulakakis KG, et al. Biomarkers for diagnosis of the vulnerable atherosclerotic plaque. Interv Cardiol. 2011;3;223-233.10.2217/ica.11.11Search in Google Scholar

11. Dalager MG, Bøttcher M, Thygesen J, Andersen G, Bøtker HE. Different Plaque Composition and Progression in Patients with Stable and Unstable Coronary Syndromes Evaluated by Cardiac CT. BioMed Research International. 2015;2015:401357. doi:10.1155/2015/401357.10.1155/2015/401357453832326339610Open DOISearch in Google Scholar

12. Waxman S, Ishibashi F, Muller JE. Detection and Treatment of Vulnerable Plaques and Vulnerable Patients. Novel Approaches to Prevention of Coronary Events. Circulation. 2006;114:2390-2411. doi: 10.1161/CIRCULATIONAHA.105.540013.10.1161/CIRCULATIONAHA.105.54001317130356Open DOISearch in Google Scholar

13. Maurovich-Horvat P, Schlett CL, Alkadhi H, et al. The napkin-ring sign indicates advanced atherosclerotic lesions in coronary CT angiography. JACC Cardiovasc Imaging. 2012;5:1243-1252. doi: 10.1016/j.jcmg.2012.03.019.10.1016/j.jcmg.2012.03.01923236975Open DOISearch in Google Scholar

14. Kajander OA, Pinilla-Echeverri N, Jolly SS, et al. Culprit plaque morphology in STEMI – an optical coherence tomography study: insights from the TOTAL-OCT substudy. EuroIntervention. 2016;12:716-723. doi: 10.4244/EIJV12I6A116.10.4244/EIJV126116Open DOISearch in Google Scholar

15. White SJ, Newby AC, Johnson TW. Endothelial erosion of plaques as a substrate for coronary thrombosis. Thromb Haemost. 2016;115:509-519. doi: 10.1160/TH15-09-0765.10.1160/TH15-09-076526791872Open DOISearch in Google Scholar

16. Nasu K, Tsuchikane E, Katoh O, et al. Accuracy of in vivo coronary plaque morphology assessment: a validation study of in vivo virtual histology compared with in vitro histopathology. J Am Coll Cardiol. 2006;47:2405-2412. doi: 10.1016/j.jacc.2006.02.044.10.1016/j.jacc.2006.02.04416781367Open DOISearch in Google Scholar

17. Motoyama S, Masayoshi S, Harigaya H, et al. Computed tomographic angiography characteristics of atherosclerotic plaques subsequently resulting in acute coronary syndrome. J Am Coll Cardiol. 2009;54:49-57. doi: 10.1016/j.jacc.2009.02.068.10.1016/j.jacc.2009.02.06819555840Open DOISearch in Google Scholar

18. Tian J, Ren X, Vergallo R, et al. Distinct morphological features of ruptured culprit plaque for acute coronary events compared to those with silent rupture and thin-cap fibroatheroma: a combined optical coherence tomography and intravascular ultrasound study. J Am Coll Cardiol. 2014;63:2209-2216. doi: 10.1016/j.jacc.2014.01.061.10.1016/j.jacc.2014.01.06124632266Open DOISearch in Google Scholar

19. Jang IK. Optical Coherence Tomography or Intravascular Ultrasound? JACC: Cardiovascular Interventions. 2011;4:492-494. doi: 10.1016/j.jcin.2011.02.004.10.1016/j.jcin.2011.02.00421596320Open DOISearch in Google Scholar

20. Yonetsu T, Lee T, Murai T, et al. Plaque morphologies and the clinical prognosis of acute coronary syndrome caused by lesions with intact fibrous cap diagnosed by optical coherence tomography. Int J Cardiol. 2016;203:766-774. doi: 10.1016/j.ijcard.2015.11.03010.1016/j.ijcard.2015.11.03026590891Open DOISearch in Google Scholar

21. Benedek T, Jako B, Benedek I. Plaque quantification by coronary CT and intravascular ultrasound identifies a low CT density core as a marker of plaque instability in acute coronary syndromes. Int Heart J. 2014;55:22-28. doi.org/10.1536/ihj.13-213.10.1536/ihj.13-21324463925Open DOISearch in Google Scholar

22. Ohayon J, Finet G, Gharib AM, et al. Necrotic core thickness and positive arterial remodeling index: emergent biomechanical factors for evaluating the risk of plaque rupture. Am J Physiol Heart Circ Physiol. 2008;295:H717-H727. doi.org/10.1152/ajpheart.00005.200810.1152/ajpheart.00005.2008Open DOISearch in Google Scholar

23. Xie Y, Mintz G, Yang J, et al. Clinical Outcome of Nonculprit Plaque Ruptures in Patients with Acute Coronary Syndrome in the PROSPECT Study. JACC Cardiovasc Imaging. 2014;7:397-405. doi: 10.1016/j.jcmg.2013.10.010.10.1016/j.jcmg.2013.10.010Open DOISearch in Google Scholar

24. Benedek I, Bucur O, Benedek T. Intracoronary infusion of mononuclear bone marrow-derived stem cells is associated with a lower plaque burden after four years. J Atheroscler Thromb. 2014;21:217-229. doi.org/10.5551/jat.19745.10.5551/jat.19745Open DOISearch in Google Scholar

25. Maejima N, Hibi K, Saka K, et al. Morphological features of non-culprit plaques on optical coherence tomography and integrated backscatter intravascular ultrasound in patients with acute coronary syndromes. Eur Heart J Cardiovasc Imaging. 2015;16:190-197. doi: 10.1093/ehjci/jeu173.10.1093/ehjci/jeu173Open DOISearch in Google Scholar

26. Kato M, Dote K, Sasaki S, et al. Presentations of acute coronary syndrome related to coronary lesion morphologies as assessed by intravascular ultrasound and optical coherence tomography. Int J Cardiol. 2013;165:506-511. doi: 10.1016/j.ijcard.2011.09.032.10.1016/j.ijcard.2011.09.032Open DOISearch in Google Scholar

27. Okubo M, Kawasaki M, Ishihara Y, et al. Tissue characterization of coronary plaques: comparison of integrated backscatter intravascular ultrasound with virtual histology intravascular ultrasound. Circ J. 2008;72:1631-1639. doi.org/10.1253/circj.CJ-07-0936.10.1253/circj.CJ-07-0936Open DOISearch in Google Scholar

28. Burke AP, Kolodgie FD, Farb A, Weber D, Virmani R. Morphological predictors of arterial remodeling in coronary atherosclerosis. Circulation. 2002;105:297-303. doi: https://doi.org/10.1161/hc0302.10261010.1161/hc0302.102610Open DOISearch in Google Scholar

29. Pasterkamp G, Schoneveld AH, van der Wal AC, et al. Relation of arterial geometry to luminal narrowing and histologic markers for plaque vulnerability: the remodeling paradox. J Am Coll Cardiol. 1998;32:655-662. doi: 10.1016/S0735-1097(98)00304-0.10.1016/S0735-1097(98)00304-0Open DOISearch in Google Scholar

30. Tian J, Ren X, Vergallo R, et al. Distinct Morphological Features of Ruptured Culprit Plaque for Acute Coronary Events Compared to Those With Silent Rupture and Thin-Cap Fibroatheroma. A Combined Optical Coherence Tomography and Intravascular Ultrasound Study. JACC. 2014;63:2209-2216. doi.org/10.1016/j.jacc.2014.01.061.10.1016/j.jacc.2014.01.06124632266Open DOISearch in Google Scholar

31. Lee Y, Kim E, Kim BK, Shin JH. A case of successful reperfusion through a combination of intracoronary thrombolysis and aspiration thrombectomy in ST segment elevation myocardial infarction associated with an ectatic coronary artery. BMC Cardiovascular Disorders. 2017;17:94. doi.org/10.1186/s12872-017-0527-0.10.1186/s12872-017-0527-0538249228381215Open DOISearch in Google Scholar

32. Carey BC, Blankenship JC. A Sequential Approach to the Management of a Massive Intracoronary Thrombus in ST Elevation Myocardial Infarction: A Case Report. 2007;58:106-111. doi: https://doi.org/10.1177/0003319706295511.10.1177/000331970629551117351166Open DOISearch in Google Scholar

33. Kang SJ, Nakano M, Virmani R, et al. OCT Findings in Patients With Recanalization of Organized Thrombi in Coronary Arteries. JACC: Cardiovascular Imaging. 2012;5:725-732. doi: https://doi.org/10.1016/j.jcmg.2012.03.012.10.1016/j.jcmg.2012.03.01222789941Open DOISearch in Google Scholar

34. Benedek T, Bucur O, Pascanu I, Benedek I. Analysis of coronary plaque morphology by 64-multislice computed tomography coronary angiography and calcium scoring in patients with type 2 diabetes mellitus. Acta Endocrinologica. 2011;7:59-68. doi: https://doi.org/10.4183/aeb.2011.59.10.4183/aeb.2011.59Open DOISearch in Google Scholar

eISSN:
2457-5518
Langue:
Anglais