Accès libre

Assessment of the time-dependent dermatotoxicity of mechlorethamine using the mouse ear vesicant model

À propos de cet article

Citez

Brinkley FB, Mershon MM, Yaverbaum S, Doxzon BF, Wade JV. (1989). The Mouse Ear Model as an In Vivo Bioassay for the Assessment of Topical Mustard (HD) Injury. In Proceedings of the 1989 Medical Defense Review. pp. 595–602.Search in Google Scholar

Capriotti K, & Capriotti JA. (2012). Dimethyl sulfoxide: history, chemistry and clinical utility in dermatology. Journal of Clinical and Aesthetic Dermatology 5(9): 24–6.Search in Google Scholar

Casillas RP, Mitcheltree LW, Stemler FW. (1997). The mouse ear model of cutaneous sulfur mustard injury. Toxicology Mechanisms and Methods7(4): 381–397.10.1080/105172397243123Search in Google Scholar

Casillas RP, Kiser RC, Truxall J, Singer AW, Shumaker SM, Niemuth N, Ricketts KM, Mitcheltree LW, Castrejon LR, Blank J. (2000). Therapeutic approaches to dermatotoxicity by sulfur mustard I. modulation of sulfur mustard-induced cutaneous injury in the mouse ear vesicant model. Journal of Applied Toxicology20: S145–S151.10.1002/1099-1263(200012)20:1+<::AID-JAT665>3.0.CO;2-JSearch in Google Scholar

Composto GM, Arunachalam T, Laskin DL, Heck DE, Laskin JD, Joseph LB. (2018). Oxidative stress and DNA damage in mouse epidermis following exposure to nitrogen mustard. The Toxicologist: Proceedings of the 57th Annual Meeting of the Society of Toxicology162: 312 (Abstract 2283).Search in Google Scholar

Crater J, Kannan S. (2007). Molecular mechanism of nitrogen mustard induced leukocyte(s) chemotaxis. Medical Hypotheses68(2): 318–319.10.1016/j.mehy.2006.04.078Search in Google Scholar

Dachir S, Fishbeine E, Meshulam Y, Sahar R, Amir A, Kadar T. (2002). Potential anti-inflammatory treatments against cutaneous sulfur mustard injury using the mouse ear vesicant model. Human and Experimental Toxicology21(4): 197–203.10.1191/0960327102ht229oaSearch in Google Scholar

Gordon MK, DeSantis-Rodrigues A, Hahn R, Zhou P, Chang Y, Svoboda KK, Gerecke DR. (2016). The molecules in the corneal basement membrane zone affected by mustard exposure suggest potential therapies. Annals of the New York Academy of Sciences1378(1): 158–165.10.1111/nyas.13226Search in Google Scholar

Kehe K, Balszuweit F, Steinritz D, Thiermann H. (2009). Molecular toxicology of sulfur mustard-induced cutaneous inflammation and blistering. Toxicology263(1): 12–19.10.1016/j.tox.2009.01.019Search in Google Scholar

Korkmaz A, Yaren H, Topal T, Oter S. (2006). Molecular targets against mustard toxicity: Implication of cell surface receptors, peroxynitrite production, and PARP activation. Archives of Toxicology.Archiv Für Toxikologie80(10): 662–70.10.1007/s00204-006-0089-xSearch in Google Scholar

Kiritsi D, Has C, Bruckner-Tuderman L. (2013). Laminin 332 in junctional epidermolysis bullosa. Cell adhesion & migration7(1): 135–41.10.4161/cam.22418Search in Google Scholar

Lulla A, Reznik S, Trombetta L, Billack B. (2014). Use of the mouse ear vesicant model to evaluate the effectiveness of ebselen as a countermeasure to the nitrogen mustard mechlorethamine. Journal of Applied Toxicology34(12): 1373–8.10.1002/jat.2969Search in Google Scholar

Malaviya R, Sunil VR, Cervelli JA, Anderson DR, Holmes WW, Conti ML, Gordon RE, Laskin JD, Laskin DL. (2010). Inflammatory effects of inhaled sulfur mustard in rat lung. Toxicology and Applied Pharmacology248(2): 89–99.10.1016/j.taap.2010.07.018Search in Google Scholar

Malaviya R, Sunil VR, Venosa A, Verissimo VL, Cervelli JA, Vayas KN, Hall L, Laskin JD, Laskin D. (2015). Attenuation of nitrogen mustard-induced pulmonary injury and fibrosis by anti-tumor necrosis factor-α antibody. Toxicological Sciences148(1): 71–88.10.1093/toxsci/kfv161Search in Google Scholar

Pant SC, Lomash V. (2016). Sulphur Mustard Induced Toxicity, Mechanism of Action and Current Medical Management. Defence Life Science Journal1(1): 07-17, DOI : 10.14429/dlsj.1.1008910.14429/dlsj.1.10089Search in Google Scholar

Paromov V, Suntres Z, Smith M, Stone WL. (2007). Sulfur mustard toxicity following dermal exposure: Role of oxidative stress, and antioxidant therapy. Journal of Burns and Wounds7: e7.Search in Google Scholar

Ries C, Popp T, Egea V, Kehe K, Jochum M. (2009). Matrix metalloproteinase-9 expression and release from skin fibroblasts interacting with keratinocytes: Upregulation in response to sulphur mustard. Toxicology263(1): 26–31.10.1016/j.tox.2008.08.011Search in Google Scholar

Shakarjian MP, Bhatt P, Gordon MK, Chang YC, Casbohm SL, Rudge TL., Kiser CR, Sabourin C, Casillas RP, Ohman-Strickland PA, Riley DJ, Gerecke DR. (2006). Preferential expression of matrix metalloproteinase-9 in mouse skin after sulfur mustard exposure. Journal of Applied Toxicology26(3): 239–246.10.1002/jat.1134Search in Google Scholar

Shakarjian MP, Heck DE, Gray JP, Sinko PJ, Gordon MK, Casillas RP, Heindel ND, Gerecke DR, Laskin D, Laskin JD. (2010). Mechanisms mediating the vesi-cant actions of sulfur mustard after cutaneous exposure. Toxicological Sciences : An Official Journal of the Society of Toxicology114(1): 5–19.10.1093/toxsci/kfp253Search in Google Scholar

Sunil VR, Patel KJ, Shen J, Reimer D, Gow AJ, Laskin JD, Laskin DL. (2011). Functional and inflammatory alterations in the lung following exposure of rats to nitrogen mustard. Toxicology and Applied Pharmacology250(1): 10–18.10.1016/j.taap.2010.09.016Search in Google Scholar

Tumu H, Cuffari B, Pino MA, Pietka-Ottlik M, Billack B. (2018). Ebselen oxide attenuates mechlorethamine dermatotoxicity in the mouse ear vesicant model. Drug and Chemical Toxicology 2018 Sep 26: 1–12. doi: 10.1080/01480545.2018.1488858. [Epub ahead of print]; PMID: 3025710910.1080/01480545.2018.1488858.[Epubaheadofprint];PMID:30257109Open DOISearch in Google Scholar

eISSN:
1337-9569
Langue:
Anglais
Périodicité:
4 fois par an
Sujets de la revue:
Medicine, Clinical Medicine, Pharmacology, Toxicology