À propos de cet article

Citez

[1] Jewell LL, Fasemore OA, Glasser D, Hildebrandt D, Heron L, Van Wyk N, et al. Toward zero waste production in the paint industry. Water SA. 2004;30(5):643-647.Search in Google Scholar

[2] Kaczala F, Marques M, Hogland W. Biotreatability of wastewater generated during machinery washing in a wood-based industry: COD, formaldehyde and nitrogen removal. Bioresour Technol. 2010;101(23):8975-8983. DOI: 10.1016/j.biortech.2010.06.122.10.1016/j.biortech.2010.06.122Search in Google Scholar

[3] Huang CP, Ghadirian M. Physical chemical treatment of paint industry wastewater. J Water Pollut Contr Fed. 1974;46(10):2340-2346.Search in Google Scholar

[4] Kutluay G, Babuna FG, Eremektar G, Orhon D. Treatability of water-based paint industry effluents. Fresenius Environ Bull. 2004;13(10):1057-1060.Search in Google Scholar

[5] Oldring PKT. Coatings, Colorants, and Paints. In: Encyclopedia of Physical Science and Technology (Third Edition), Wimbledon, England UK: Academic Press; 2003; 175-190. DOI: 10.1016/B0-12-227410-5/00115-0.10.1016/B0-12-227410-5/00115-0Search in Google Scholar

[6] Höfer R. 10.22. Processing and Performance Additives for Coatings. Polymer Science - A Comprehensive Reference, Volume 10: Polymers Sust Environ Green Energy. 2012; 383-396. DOI: 10.1016/B978-0-444-53349-4.00273-9.10.1016/B978-0-444-53349-4.00273-9Search in Google Scholar

[7] Bulian F, Graystone JA. Chapter 3. Raw Materials for Wood Coatings (1) - Film Formers (Binders, Resins and Polymers), 53-94 and Chapter 5. Classification and Formulation of Wood Coatings, 137-154. In: Wood Coatings. Theory and practice. Elsevier; 2009; DOI: 10.1016/B978-0-444-52840-7.00005-9.10.1016/B978-0-444-52840-7.00005-9Search in Google Scholar

[8] Imam SH, Gordon SH, Mao L, Chen L. Environmentally friendly wood adhesive from a renewable plant polymer: characteristics and optimization. Polymer Degrad Stabil. 200;73(3):529-533. DOI: 10.1016/S0141-3910(01)00114-8.10.1016/S0141-3910(01)00114-8Search in Google Scholar

[9] Landry V, Blanchet P, Weathering resistance of opaque PVDF-acrylic coatings applied on wood substrates. Progr Org Coating. 2012;75(4):494-501. DOI: 10.1016/j.porgcoat.2012.06.004.10.1016/j.porgcoat.2012.06.004Search in Google Scholar

[10] Liauw C, Allen NS, Edge M, Ortega A, Stratton J, McIntyre RB. Behaviour of nanoparticle (ultrafine) titanium dioxide pigments and stabilisers on the photooxidative stability of water based acrylic and isocyanate based acrylic coatings. Polymer Degrad Stabil. 2002;78(3):467-478. DOI: 10.1016/S0141-3910(02)00189-1.10.1016/S0141-3910(02)00189-1Search in Google Scholar

[11] Donkers PAJ, Huinink HP, Erich SJF, Reuvers NJW, Adan OCG. Water permeability of pigmented waterborne coatings. Progr Org Coating. 2013;76(1):60-69. DOI: 10.1016/j.porgcoat.2012.08.011.10.1016/j.porgcoat.2012.08.011Search in Google Scholar

[12] Prasad MS, Reid KJ, Murray KK. Kaolin: processing, properties and applications. Appl Clay Sci. 1991;6(2):87-119. DOI: 10.1016/0169-1317(91)90001-P.10.1016/0169-1317(91)90001-PSearch in Google Scholar

[13] Dhyani S, Kamdem DP. Bioavailability and form of copper in wood treated with copper-based preservative. Wood Sci Tech. 2012;46(6):1203-1213. DOI: 10.1007/s00226-012-0475-x.10.1007/s00226-012-0475-xSearch in Google Scholar

[14] Grāvitis J, Ābolinš J, Tupčiauskas R, Vēveris A. Lignin from steam-exploded wood as binder in wood composites. J Environ Eng Landsc Manage. 2010;18(2):75-84. DOI: 10.3846/jeelm.2010.09.10.3846/jeelm.2010.09Search in Google Scholar

[15] Bellotti N, Deyá C, del Amo B, Romagnoli R. “Quebracho” tannin derivative and boosters biocides for new antifouling formulations. J Coating Tech Res. 2012;9(5):551-559. DOI: 10.1007/s11998-012-9403-0.10.1007/s11998-012-9403-0Search in Google Scholar

[16] Grynkiewicz-Bylina B. Testing of toxic elements migration from the materials used as toy coatings. Ecol Chem Eng S. 2011;18(2):223-231.Search in Google Scholar

[17] Hellgren A-C, Weissenborn P, Holmberg K. Surfactants in water-borne paints. Progr Org Coating. 1999;35(1-4):79-87. DOI: 10.1016/S0300-9440(99)00013-2.10.1016/S0300-9440(99)00013-2Search in Google Scholar

[18] Holmberg K. Unsaturated monoethanolamide ethoxylates as paint surfactants. Progr Colloid Polymer Sci. 1996;101:69-74. DOI: 10.1007/BFb0114446.10.1007/BFb0114446Search in Google Scholar

[19] Garrido JM, Méndez R. Treatment of wastewaters from a formaldehyde-urea adhesives factory. Water Sci Tech. 2000;42(5-6):293-300.10.2166/wst.2000.0527Search in Google Scholar

[20] Eiroa M, Vilar A, Kennes C, Veiga MC. Biological treatment of industrial wastewater containing formaldehyde and formic acid. Water SA. 2006;32(1):115-118.Search in Google Scholar

[21] Campos JL, Sanchez M, Corral-Mosquera A, Mendez R, Lema JM. Coupled BAS and anoxic USB system to remove urea and formaldehyde from wastewater. Water Res. 2003;37(14):3445-3451. DOI: 10.1016/S0043-1354(03)00011-3.10.1016/S0043-1354(03)00011-3Search in Google Scholar

[22] Dovletoglou O, Philippopoulos C, Grigoropoulou H. Coagulation for treatment of paint industry wastewater. J Environ Sci Health Part A. 2002;37(7):1361-1377. DOI: 10.1081/ESE-120005992.10.1081/ESE-12000599215328698Search in Google Scholar

[23] Aboulhassan MA, Souabi S, Yaacoubi A, Baudu M. Improvement of paint effluents coagulation using natural and synthetic coagulant aids. J Hazard Mater. 2006;138(1):40-45. DOI: 10.1016/j.jhazmat.2006.05.040.10.1016/j.jhazmat.2006.05.04016814462Search in Google Scholar

[24] Kabdasli I̧, Tun̈ ay O, Konuk K, Eţcǐoglu G, Koca̧ bas E. Treatability of wastewaters originating from water-based paint production with latex binder. Fresenius Environ Bull. 2012;21(10A):3122-3126.Search in Google Scholar

[25] Eremktar G, Goksen S, Babuna FG, Dogruel S. Coagulation-flocculation of wastewaters from a water-based paint and allied products industry and its effect on inert COD. J Environ Sci Health Part A. 2006;41(9):1843-1852. DOI: 10.1080/10934520600779018.10.1080/1093452060077901816849130Search in Google Scholar

[26] Balasco AA. Development of a new process for treatment of paint sludge wastes. Task Order Number 6. Final Report to United States Army Toxic and Hazardous Materials Agency; 1987. www.dtic.mil/cgi-bin/GetTRDoc?AD=ADA197657.Search in Google Scholar

[27] Zagklis DP, Koutsoukos PG, Paraskeva CA. A combined coagulation/flocculation and membrane filtration process for the treatment of paint industry wastewaters. Ind Eng Chem Res. 2012;51(47):15456-15462. DOI: 10.1021/ie302086j.10.1021/ie302086jSearch in Google Scholar

[28] Tünay O, Kocabaş E, Olmez-Hanci T, Kabdaşh I. Characterization and treatability of latex and PVA based paint production wastewaters. Fresenius Environ Bull. 2010;19(9):1884-1888.Search in Google Scholar

[29] http://www.kemipol.com.pl/products.Search in Google Scholar

[30] Talinli I, Anderson GK. Interference of hydrogen peroxide on the standard COD test. Water Res. 1992;26:107-110. DOI: 10.1016/0043-1354(92)90118-N.10.1016/0043-1354(92)90118-NSearch in Google Scholar

[31] Kang YW, Cho MJ, Hwang KY. Correction of hydrogen peroxide interference on standard chemical oxygen demand test. Water Res. 1999;33:1247-1251. DOI: 10.1016/S0043-1354(98)00315-7.10.1016/S0043-1354(98)00315-7Search in Google Scholar

[32] Lee E, Lee H, Kim YK, Sohn K, Lee K. Hydrogen peroxide interference in chemical oxygen demand during ozone based advanced oxidation of anaerobically digested livestock wastewater. Int J Environ Sci Tech. 2011;8(2):381-388.10.1007/BF03326225Search in Google Scholar

[33] US EPA Method 1311. Toxicity characteristic leaching procedure (TCLP); 1992.Search in Google Scholar

[34] Markowska-Szczupak A, Ulfig K, Morawski AW. The application of titanium dioxide for deactivation of bioparticulates: An overview. Catal Today. 2011;169(1):249-257. DOI: 10.1016/j.cattod.2010.11.055.10.1016/j.cattod.2010.11.055Search in Google Scholar

[35] Malakootian M, Almasi A, Hossaini H. Pb and Co removal from paint industries effluent using wood ash. Int J Environ Sci Tech. 2008;5(2):217-222.10.1007/BF03326015Search in Google Scholar

[36] http://h2o2.com/industrial/applications.aspx?pid=109&name=Formaldehyde-Oxidation.Search in Google Scholar

[37] http://www.solvaychemicals.us/static/wma/pdf/6/6/2/3/TP_CostEffect.pdf.Search in Google Scholar

[38] Moussayi G, Yazdanbakhash A, Heidarizad M. The removal of formaldehyde from concentrated synthetic wastewater using O3/MgO/H2O2 process integrated with the biological treatment. J Hazard Mater. 2009;171(1-3):907-913. DOI: 10.1016/j.jhazmat.2009.06.090.10.1016/j.jhazmat.2009.06.09019616892Search in Google Scholar

[39] Barbusiński K. Fenton reaction - controversy concerning the chemistry. Ecol Chem Eng S. 2009;16(3):347-358 and literature cited therein.Search in Google Scholar

[40] Ledakowicz S, Bilińska L, Żyłła R. Application of Fenton’s reagent in the textile wastewater treatment under industrial conditions. Ecol Chem Eng S. 2012;19(2):163-174. DOI: 10.2478/v10216-011-0013-z.10.2478/v10216-011-0013-zSearch in Google Scholar

[41] Bianco B, De Michelis I, Vegliò F. Fenton treatment of complex industrial wastewater: Optimization of process conditions by surface response method. J Hazard Mater. 2011;186(2-3):1733-1738. DOI: 10.1016/j.jhazmat.2010.12.054.10.1016/j.jhazmat.2010.12.05421272994Search in Google Scholar

[42] Kurt U, Avasara Y, Gonullua MT. Treatability of water-based paint wastewater with Fenton process in different reactor types. Chemosphere. 2006;64(9):1536-1540. DOI: 10.1016/j.chemosphere.2005.11.026.10.1016/j.chemosphere.2005.11.02616403416Search in Google Scholar

[43] Koppenol WH. The Haber-Weiss cycle - 70 years later. Redox Report. 2001;6(4):229-234. DOI: 10.1179/135100001101536373. 10.1179/13510000110153637311642713Search in Google Scholar

eISSN:
1898-6196
Langue:
Anglais