À propos de cet article

Citez

Al-Mamun, H.A., Clark, S.A., Kwan, P. and C. Gondro (2015): Genome-Wide Linkage Disequilibrium and Genetic Diversity in Five Populations of Australian Domestic Sheep. Genetics Selection Evolution 47, 90.Al-MamunH.A.ClarkS.A.KwanP.GondroC.2015Genome-Wide Linkage Disequilibrium and Genetic Diversity in Five Populations of Australian Domestic SheepGenetics Selection Evolution479010.1186/s12711-015-0169-6465920726602211Search in Google Scholar

Ardlie, K.G., Kruglyak, L. and M. Seielstad (2002): Patterns of Linkage Disequilibrium in the Human Genome. Nature Reviews Genetics 3, 299–309.ArdlieK.G.KruglyakL.SeielstadM.2002Patterns of Linkage Disequilibrium in the Human GenomeNature Reviews Genetics329930910.1038/nrg77711967554Search in Google Scholar

Ardren, W.R. and A.R. Kapuscinski (2003): Demographic and Genetic Estimates of Effective Population Size (Ne) Reveals Genetic Compensation in Steelhead Trout. Molecular Ecology 12, 35–49.ArdrenW.R.KapuscinskiA.R.2003Demographic and Genetic Estimates of Effective Population Size (Ne) Reveals Genetic Compensation in Steelhead TroutMolecular Ecology12354910.1046/j.1365-294X.2003.01705.xSearch in Google Scholar

Balloux, F. and R. Williams (2004): Heterozygote Excess in Small Populations and the Heterozygote-Excess Effective Population Size. Evolution 58, 1891–1900.BallouxF.WilliamsR.2004Heterozygote Excess in Small Populations and the Heterozygote-Excess Effective Population SizeEvolution581891190010.1111/j.0014-3820.2004.tb00477.x15521449Search in Google Scholar

Bamshad, M. and S.P. Wooding (2003): Signatures of Natural Selection in the Human Genome. Nature Reviews Genetics 4, 99–111.BamshadM.WoodingS.P.2003Signatures of Natural Selection in the Human GenomeNature Reviews Genetics49911110.1038/nrg99912560807Search in Google Scholar

Barthelmes, D. (1983): FAO Fisheries Technical Paper No 217: Conservation of the Genetic Resources of Fish: Problems and Recommendations. Report of the Expert Consultation on the Genetic Resources of Fish, Rome 9–13 June 1980. FAO, Rome, ISBN 92-5-101173-7.BarthelmesD.1983FAO Fisheries Technical Paper No 217: Conservation of the Genetic Resources of Fish: Problems and Recommendations. Report of the Expert Consultation on the Genetic Resources of Fish, Rome 9–13 June 1980FAO, RomeISBN 92-5-101173-7Search in Google Scholar

Bohmanova, J., Sargolzaei, M. and F.S. Schenkel (2010): Characteristics of Linkage Disequilibrium in North American Holsteins. BMC Genomics 11, 421.BohmanovaJ.SargolzaeiM.SchenkelF.S.2010Characteristics of Linkage Disequilibrium in North American HolsteinsBMC Genomics1142110.1186/1471-2164-11-421299694920609259Search in Google Scholar

Brito, L.F., Jafarikia, M., Grossi, D.A., Kijas, J.W., Porto-Neto, L.R., Ventura, R.V., Salgorzaei, M. and F.S. Schenkel (2015): Characterization of Linkage Disequilibrium, Consistency of Gametic Phase and Admixture in Australian and Canadian Goats. BMC Genetics 16, 67.BritoL.F.JafarikiaM.GrossiD.A.KijasJ.W.Porto-NetoL.R.VenturaR.V.SalgorzaeiM.SchenkelF.S.2015Characterization of Linkage Disequilibrium, Consistency of Gametic Phase and Admixture in Australian and Canadian GoatsBMC Genetics166710.1186/s12863-015-0220-1447906526108536Search in Google Scholar

Caballero, A. (1994): Developments in the Prediction of Effective Population Size. Heredity 73, 657–679.CaballeroA.1994Developments in the Prediction of Effective Population SizeHeredity7365767910.1038/hdy.1994.1747814264Search in Google Scholar

Charlesworth, B. (2009): Effective Population Size and Patterns of Molecular Evolution and Variation. Nature Reviews Genetics 10, 195–205.CharlesworthB.2009Effective Population Size and Patterns of Molecular Evolution and VariationNature Reviews Genetics1019520510.1038/nrg252619204717Search in Google Scholar

Charlesworth, B., Morgan, M.T. and D. Charlesworth (1993): The Effect of Deleterious Mutations on Neutral Molecular Variation. Genetics 134, 1289–1303.CharlesworthB.MorganM.T.CharlesworthD.1993The Effect of Deleterious Mutations on Neutral Molecular VariationGenetics1341289130310.1093/genetics/134.4.128912055968375663Search in Google Scholar

Curik, I., Ferenčaković, M. and J. Sölkner (2014): Inbreeding and Runs of Homozygosity: A Possible Solution to an Old Problem. Livestock Science 166, 26–34.CurikI.FerenčakovićM.SölknerJ.2014Inbreeding and Runs of Homozygosity: A Possible Solution to an Old ProblemLivestock Science166263410.1016/j.livsci.2014.05.034Search in Google Scholar

Drögemüller, C., Reichart, U., Seuberlich, T., Oevermann, A., Baumgartner, M., Boghenbor, K.K., Stoffel, M.H. et al. (2011): An Unusual Splice Defect in the Mitofusin 2 Gene (MFN2) Is Associated with Degenerative Axonopathy in Tyrolean Grey Cattle. PLoS ONE 6, e18931.DrögemüllerC.ReichartU.SeuberlichT.OevermannA.BaumgartnerM.BoghenborK.K.StoffelM.H.et al2011An Unusual Splice Defect in the Mitofusin 2 Gene (MFN2) Is Associated with Degenerative Axonopathy in Tyrolean Grey CattlePLoS ONE6e1893110.1371/journal.pone.0018931307813721526202Search in Google Scholar

Du, F.X., Clutter, A.C. and M.M. Lohuis (2007): Characterizing Linkage Disequilibrium in Pig Populations. International Journal of Biological Sciences 3, 166–178.DuF.X.ClutterA.C.LohuisM.M.2007Characterizing Linkage Disequilibrium in Pig PopulationsInternational Journal of Biological Sciences316617810.7150/ijbs.3.166180201817384735Search in Google Scholar

Eggermann, T., Soellner, L., Buiting, K. and D. Kotzot (2015): Mosaicism and Uniparental Disomy in Prenatal Diagnosis. Trends in Molecular Medicine, Special Issue: Nurturing the Next Generation, 21, 77–87.EggermannT.SoellnerL.BuitingK.KotzotD.2015Mosaicism and Uniparental Disomy in Prenatal DiagnosisTrends in Molecular Medicine, Special Issue: Nurturing the Next Generation21778710.1016/j.molmed.2014.11.01025547535Search in Google Scholar

Espigolan, R., Baldi, F., Boligon, A.A., Souza, F.R., Gordo, D.G., Tonussi, R.L., Cardoso, D.F. et al. (2013): Study of Whole Genome Linkage Disequilibrium in Nellore Cattle. BMC Genomics 14 305.EspigolanR.BaldiF.BoligonA.A.SouzaF.R.GordoD.G.TonussiR.L.CardosoD.F.et al2013Study of Whole Genome Linkage Disequilibrium in Nellore CattleBMC Genomics1430510.1186/1471-2164-14-305366263623642139Search in Google Scholar

Flori, L., Fritz, S., Jaffrézic, F., Boussaha, M., Gut, I., Heath, S., Foulley, J.L. and M. Gautier (2009): The Genome Response to Artificial Selection: A Case Study in Dairy Cattle. PLOS ONE 4, e6595.FloriL.FritzS.JaffrézicF.BoussahaM.GutI.HeathS.FoulleyJ.L.GautierM.2009The Genome Response to Artificial Selection: A Case Study in Dairy CattlePLOS ONE4e659510.1371/journal.pone.0006595272272719672461Search in Google Scholar

Frankham, R. (1995): Effective Population Size/adult Population Size Ratios in Wildlife: A Review. Genetics Research 66, 95–107.FrankhamR.1995Effective Population Size/adult Population Size Ratios in Wildlife: A ReviewGenetics Research669510710.1017/S0016672300034455Search in Google Scholar

Frankham, R., Bradshaw, C.J.A. and B.W. Brook (2014): Genetics in Conservation Management: Revised Recommendations for the 50/500 Rules, Red List Criteria and Population Viability Analyses. Biological Conservation 170, 56–63.FrankhamR.BradshawC.J.A.BrookB.W.2014Genetics in Conservation Management: Revised Recommendations for the 50/500 Rules, Red List Criteria and Population Viability AnalysesBiological Conservation170566310.1016/j.biocon.2013.12.036Search in Google Scholar

Glick, G., Shirak, A., Uliel, S., Zeron, Y., Ezra, E., Seroussi, E., Ron, M. and J.I. Weller (2012): Signatures of Contemporary Selection in the Israeli Holstein Dairy Cattle. Animal Genetics 43, 45–55.GlickG.ShirakA.UlielS.ZeronY.EzraE.SeroussiE.RonM.WellerJ.I.2012Signatures of Contemporary Selection in the Israeli Holstein Dairy CattleAnimal Genetics43455510.1111/j.1365-2052.2012.02348.x22742502Search in Google Scholar

Hall, S.J.G. (2016): Effective Population Sizes in Cattle, Sheep, Horses, Pigs and Goats Estimated from Census and Herdbook Data. Animal 10, 1778–1785.HallS.J.G.2016Effective Population Sizes in Cattle, Sheep, Horses, Pigs and Goats Estimated from Census and Herdbook DataAnimal101778178510.1017/S175173111600091427160794Search in Google Scholar

Hallatschek, O., Hersen, P., Ramanathan, S. and D.R. Nelson (2007): Genetic Drift at Expanding Frontiers Promotes Gene Segregation. Proceedings of the National Academy of Sciences 104, 19926–19930.HallatschekO.HersenP.RamanathanS.NelsonD.R.2007Genetic Drift at Expanding Frontiers Promotes Gene SegregationProceedings of the National Academy of Sciences104199261993010.1073/pnas.0710150104214839918056799Search in Google Scholar

Hayes, B.J., Chamberlain, A.J., Maceachern, S., Savin, K., McPartlan, H., MacLeod, I., Sethuraman, L. and M.E. Goddard (2009): A Genome Map of Divergent Artificial Selection between Bos Taurus Dairy Cattle and Bos Taurus Beef Cattle. Animal Genetics 40, 176–184.HayesB.J.ChamberlainA.J.MaceachernS.SavinK.McPartlanH.MacLeodI.SethuramanL.GoddardM.E.2009A Genome Map of Divergent Artificial Selection between Bos Taurus Dairy Cattle and Bos Taurus Beef CattleAnimal Genetics4017618410.1111/j.1365-2052.2008.01815.x19067671Search in Google Scholar

Hayes, B.J., Visscher, P.M., McPartlan, H.C. and M.E. Goddard (2003): Novel Multilocus Measure of Linkage Disequilibrium to Estimate Past Effective Population Size. Genome Research 13, 635–643.HayesB.J.VisscherP.M.McPartlanH.C.GoddardM.E.2003Novel Multilocus Measure of Linkage Disequilibrium to Estimate Past Effective Population SizeGenome Research1363564310.1101/gr.38710343016112654718Search in Google Scholar

Hill, W.G. (1981): Estimation of Effective Population Size from Data on Linkage Disequilibrium. Genetics Research 38, 209–216.HillW.G.1981Estimation of Effective Population Size from Data on Linkage DisequilibriumGenetics Research3820921610.1017/S0016672300020553Search in Google Scholar

Hill, W.G. and A. Robertson (1968): Linkage Disequilibrium in Finite Populations. Theoretical and Applied Genetics 38, 226–231.HillW.G.RobertsonA.1968Linkage Disequilibrium in Finite PopulationsTheoretical and Applied Genetics3822623110.1007/BF0124562224442307Search in Google Scholar

Hinds, D.A., Stuve, L.L., Nilsen, G.B., Halperin, E., Eskin, E., Ballinger, D.G., Frazer, K.A. and D.R. Cox (2005): Whole-Genome Patterns of Common DNA Variation in Three Human Populations. Science 307, 1072–1079.HindsD.A.StuveL.L.NilsenG.B.HalperinE.EskinE.BallingerD.G.FrazerK.A.CoxD.R.2005Whole-Genome Patterns of Common DNA Variation in Three Human PopulationsScience3071072107910.1126/science.110543615718463Search in Google Scholar

Howrigan, D.P., Simonson, M.A. and M.C. Keller (2011): Detecting Autozygosity through Runs of Homozygosity: A Comparison of Three Autozygosity Detection Algorithms. BMC Genomics 12, 460.HowriganD.P.SimonsonM.A.KellerM.C.2011Detecting Autozygosity through Runs of Homozygosity: A Comparison of Three Autozygosity Detection AlgorithmsBMC Genomics1246010.1186/1471-2164-12-460318853421943305Search in Google Scholar

Huie, M.L., Anyane-Yeboa, K., Guzman, E. and R. Hirschhorn (2002): Homozygosity for Multiple Contiguous Single-Nucleotide Polymorphisms as an Indicator of Large Heterozygous Deletions: Identification of a Novel Heterozygous 8-Kb Intragenic Deletion (IVS7–19 to IVS15–17) in a Patient with Glycogen Storage Disease Type II. The American Journal of Human Genetics 70, 1054–1057.HuieM.L.Anyane-YeboaK.GuzmanE.HirschhornR.2002Homozygosity for Multiple Contiguous Single-Nucleotide Polymorphisms as an Indicator of Large Heterozygous Deletions: Identification of a Novel Heterozygous 8-Kb Intragenic Deletion (IVS7–19 to IVS15–17) in a Patient with Glycogen Storage Disease Type IIThe American Journal of Human Genetics701054105710.1086/33969137910211854868Search in Google Scholar

Jorde, P.E. and N. Ryman (1995): Temporal Allele Frequency Change and Estimation of Effective Size in Populations with Overlapping Generations. Genetics 139, 1077–1090.JordeP.E.RymanN.1995Temporal Allele Frequency Change and Estimation of Effective Size in Populations with Overlapping GenerationsGenetics1391077109010.1093/genetics/139.2.107712063587713410Search in Google Scholar

Kardos, M., Luikart, G. and F.W. Allendorf (2015): Measuring Individual Inbreeding in the Age of Genomics: Marker-Based Measures Are Better than Pedigrees. Heredity 115, 63–72.KardosM.LuikartG.AllendorfF.W.2015Measuring Individual Inbreeding in the Age of Genomics: Marker-Based Measures Are Better than PedigreesHeredity115637210.1038/hdy.2015.17481549526059970Search in Google Scholar

Kardos, M., Taylor, H.R., Ellegren, H., Luikart, G. and F.W. Allendorf (2016): Genomics Advances the Study of Inbreeding Depression in the Wild. Evolutionary Applications 9, 1205–1218.KardosM.TaylorH.R.EllegrenH.LuikartG.AllendorfF.W.2016Genomics Advances the Study of Inbreeding Depression in the WildEvolutionary Applications91205121810.1111/eva.12414510821327877200Search in Google Scholar

Kauer, M.O., Dieringer, D. and C. Schlötterer (2003): A Microsatellite Variability Screen for Positive Selection Associated with The ‘out of Africa’ habitat Expansion of Drosophila Melanogaster. Genetics 165, 1137–1148.KauerM.O.DieringerD.SchlöttererC.2003A Microsatellite Variability Screen for Positive Selection Associated with The ‘out of Africa’ habitat Expansion of Drosophila MelanogasterGenetics1651137114810.1093/genetics/165.3.1137146282014668371Search in Google Scholar

Kijas, J.W., Lenstra, J.A., Hayes, B., Boitard, S., Porto Neto, L.R., San Cristobal, M., Servin, B. et al. (2012): Genome-Wide Analysis of the World’s Sheep Breeds Reveals High Levels of Historic Mixture and Strong Recent Selection. PLoS Biology 10, e1001258.KijasJ.W.LenstraJ.A.HayesB.BoitardS.Porto NetoL.R.San CristobalM.ServinB.et al2012Genome-Wide Analysis of the World’s Sheep Breeds Reveals High Levels of Historic Mixture and Strong Recent SelectionPLoS Biology10e100125810.1371/journal.pbio.1001258327450722346734Search in Google Scholar

Kim, Y. and W. Stephan (2002): Detecting a Local Signature of Genetic Hitchhiking Along a Recombining Chromosome. Genetics 160, 765–777.KimY.StephanW.2002Detecting a Local Signature of Genetic Hitchhiking Along a Recombining ChromosomeGenetics16076577710.1093/genetics/160.2.765146196811861577Search in Google Scholar

Kominakis, A., Hager-Theodorides, A.L., Saridaki, A., Antonakos, G. and G. Tsiamis (2017): Genome-Wide Population Structure and Evolutionary History of the Frizarta Dairy Sheep. Animal 3, 1–9.KominakisA.Hager-TheodoridesA.L.SaridakiA.AntonakosG.TsiamisG.2017Genome-Wide Population Structure and Evolutionary History of the Frizarta Dairy SheepAnimal31910.1017/S175173111700042828274293Search in Google Scholar

Kristensen, T.N., Hoffmann, A.A., Pertoldi, C. and A.V. Stronen (2015): What Can Livestock Breeders Learn from Conservation Genetics and Vice Versa? Frontiers in Genetics 5, 00038.KristensenT.N.HoffmannA.A.PertoldiC.StronenA.V.2015What Can Livestock Breeders Learn from Conservation Genetics and Vice Versa?Frontiers in Genetics50003810.3389/fgene.2015.00038432273225713584Search in Google Scholar

Kruglyak, L. (1999): Prospects for Whole-Genome Linkage Disequilibrium Mapping of Common Disease Genes. Nature Genetics 22, 139–144.KruglyakL.1999Prospects for Whole-Genome Linkage Disequilibrium Mapping of Common Disease GenesNature Genetics2213914410.1038/964210369254Search in Google Scholar

Lacy, R.C. (1987): Loss of Genetic Diversity from Managed Populations: Interacting Effects of Drift, Mutation, Immigration, Selection, and Population Subdivision. Conservation Biology 1, 143–158.LacyR.C.1987Loss of Genetic Diversity from Managed Populations: Interacting Effects of Drift, Mutation, Immigration, Selection, and Population SubdivisionConservation Biology114315810.1111/j.1523-1739.1987.tb00023.xSearch in Google Scholar

Lanfear, R., Kokko, H. and A. Eyre-Walker (2014): Population Size and the Rate of Evolution. Trends in Ecology & Evolution 29, 33–41.LanfearR.KokkoH.Eyre-WalkerA.2014Population Size and the Rate of EvolutionTrends in Ecology & Evolution29334110.1016/j.tree.2013.09.00924148292Search in Google Scholar

Leroy, G. (2014): Inbreeding Depression in Livestock Species: Review and Meta-Analysis. Animal Genetics 45, 618–628.LeroyG.2014Inbreeding Depression in Livestock Species: Review and Meta-AnalysisAnimal Genetics4561862810.1111/age.1217824975026Search in Google Scholar

Lewontin, R.C. (1964): The Interaction of Selection and Linkage. I. General Considerations; Heterotic Models. Genetics 49, 49–67.LewontinR.C.1964The Interaction of Selection and LinkageI. General Considerations; Heterotic Models. Genetics49496710.1093/genetics/49.1.49Search in Google Scholar

Lewontin, R.C. and K. Kojima (1960): The Evolutionary Dynamics of Complex Polymorphisms. Evolution 14, 458–472.LewontinR.C.KojimaK.1960The Evolutionary Dynamics of Complex PolymorphismsEvolution14458472Search in Google Scholar

Lindblad-Toh, K., Wade, C.M., Mikkelsen, T.S., Karlsson, E.K., Jaffe, D.B., Kamal, M., Clamp, M. et al. (2005): Genome Sequence, Comparative Analysis and Haplotype Structure of the Domestic Dog. Nature 438, 803–819.Lindblad-TohK.WadeC.M.MikkelsenT.S.KarlssonE.K.JaffeD.B.KamalM.ClampM.et al2005Genome Sequence, Comparative Analysis and Haplotype Structure of the Domestic DogNature43880381910.1038/nature04338Search in Google Scholar

McCarroll, S.A., Hadnott, T.N., Perry, G.H., Sabeti, P.C., Zody, M.C., Barrett, J.C., Dallaire, S. et al. (2006): Common Deletion Polymorphisms in the Human Genome. Nature Genetics 38, 86–92.McCarrollS.A.HadnottT.N.PerryG.H.SabetiP.C.ZodyM.C.BarrettJ.C.DallaireS.et al2006Common Deletion Polymorphisms in the Human GenomeNature Genetics38869210.1038/ng1696Search in Google Scholar

McEvoy, B.P., Powell, J.E., Goddard, M.E. and P.M. Visscher (2011): Human Population Dispersal ‘Out of Africa’ Estimated from Linkage Disequilibrium and Allele Frequencies of SNPs. Genome Research 21, 821–829.McEvoyB.P.PowellJ.E.GoddardM.E.VisscherP.M.2011Human Population Dispersal ‘Out of Africa’ Estimated from Linkage Disequilibrium and Allele Frequencies of SNPsGenome Research2182182910.1101/gr.119636.110Search in Google Scholar

McQuillan, R., Leutenegger, A.L., Abdel-Rahman, R., Franklin, C.S., Pericic, M., Barac-Lauc, L., Smolej-Narancic, N. et al. (2008): Runs of Homozygosity in European Populations. The American Journal of Human Genetics 83, 359–372.McQuillanR.LeuteneggerA.L.Abdel-RahmanR.FranklinC.S.PericicM.Barac-LaucL.Smolej-NarancicN.et al2008Runs of Homozygosity in European PopulationsThe American Journal of Human Genetics8335937210.1016/j.ajhg.2008.08.007Search in Google Scholar

Mdladla, K., Dzomba, E.F., Huson, H.J. and F.C. Muchadeyi (2016): Population Genomic Structure and Linkage Disequilibrium Analysis of South African Goat Breeds Using Genome-Wide SNP Data. Animal Genetics 47, 471–482.MdladlaK.DzombaE.F.HusonH.J.MuchadeyiF.C.2016Population Genomic Structure and Linkage Disequilibrium Analysis of South African Goat Breeds Using Genome-Wide SNP DataAnimal Genetics4747148210.1111/age.12442Search in Google Scholar

Mészáros, G., Boison, S.A., Pérez O’Brien, A.M., Ferenčaković, M., Curik, I., Da Silva, M.V.B., Utsunomiya, Y.T., Garcia, J.F. and J. Sölkner (2015): Genomic Analysis for Managing Small and Endangered Populations: A Case Study in Tyrol Grey Cattle. Frontiers in Genetics 6, 173.MészárosG.BoisonS.A.Pérez O’BrienA.M.FerenčakovićM.CurikI.Da SilvaM.V.B.UtsunomiyaY.T.Garcia, J.F. and J. Sölkner2015Genomic Analysis for Managing Small and Endangered Populations: A Case Study in Tyrol Grey CattleFrontiers in Genetics6173Search in Google Scholar

Mignon-Grasteau, S., Boissy, A., Bouix, J., Faure, J.M., Fisher, A.D., Hinch, G.N., Jensen, P. et al. (2005): Genetics of Adaptation and Domestication in Livestock. Livestock Production Science 93, 3–14.Mignon-GrasteauS.BoissyA.BouixJ.FaureJ.M.FisherA.D.HinchG.N.JensenP.et al2005Genetics of Adaptation and Domestication in LivestockLivestock Production Science9331410.1016/j.livprodsci.2004.11.001Search in Google Scholar

Nei, M. (1977): F-Statistics and Analysis of Gene Diversity in Subdivided Populations. Annals of Human Genetics 41, 225–233.NeiM.1977F-Statistics and Analysis of Gene Diversity in Subdivided PopulationsAnnals of Human Genetics4122523310.1111/j.1469-1809.1977.tb01918.xSearch in Google Scholar

Nielsen, R. (2005): Molecular Signatures of Natural Selection. Annual Review of Genetics 39, 197–218.NielsenR.2005Molecular Signatures of Natural SelectionAnnual Review of Genetics3919721810.1146/annurev.genet.39.073003.112420Search in Google Scholar

Payseur, B.A. and M.W. Nachman (2002): Natural Selection at Linked Sites in Humans. Gene 300, 31–42.PayseurB.A.NachmanM.W.2002Natural Selection at Linked Sites in HumansGene300314210.1016/S0378-1119(02)00849-1Search in Google Scholar

Pérez O’Brien, A.M., Utsunomiya, Y.T., Mészáros, G., Bickhart, D.M., Liu, G.E., Van Tassell, C.P., Sonstegard, T.S., Da Silva, M.V.B., Garcia, J.F. and J. Sölkner (2014): Assessing Signatures of Selection through Variation in Linkage Disequilibrium between Taurine and Indicine Cattle. Genetics, Selection, Evolution 46, 19.Pérez O’BrienA.M.UtsunomiyaY.T.MészárosG.BickhartD.M.LiuG.E.Van TassellC.P.SonstegardT.S.Da SilvaM.V.B.GarciaJ.F.SölknerJ.2014Assessing Signatures of Selection through Variation in Linkage Disequilibrium between Taurine and Indicine CattleGenetics, Selection, Evolution461910.1186/1297-9686-46-19401480524592996Search in Google Scholar

Peripolli, E., Munari, D.P., Da Silva, M.V.B., Lima, A.L.F., Irgang, R. and F. Baldi (2016): Runs of Homozygosity: Current Knowledge and Applications in Livestock. Animal Genetics 48, 255–271.PeripolliE.MunariD.P.Da SilvaM.V.B.LimaA.L.F.IrgangR.BaldiF.2016Runs of Homozygosity: Current Knowledge and Applications in LivestockAnimal Genetics4825527110.1111/age.1252627910110Search in Google Scholar

Pertoldi, C., Randi, E., Ruiz-Gonzalez, A., Vergeer, P. and J. Ouborg (2016): How Can Genomic Tools Contribute to the Conservation of Endangered Organisms. International Journal of Genomics 12, e4712487.PertoldiC.RandiE.Ruiz-GonzalezA.VergeerP.OuborgJ.2016How Can Genomic Tools Contribute to the Conservation of Endangered OrganismsInternational Journal of Genomics12e471248710.1155/2016/4712487512641927975048Search in Google Scholar

Pintus, E., Sorbolini, S., Albera, A., Gaspa, G., Dimauro, C., Steri, R., Marras, G. and N.P. Macciotta (2014): Use of Locally Weighted Scatterplot Smoothing (LOWESS) Regression to Study Selection Signatures in Piedmontese and Italian Brown Cattle Breeds. Animal Genetics 45, 1–11.PintusE.SorboliniS.AlberaA.GaspaG.DimauroC.SteriR.MarrasG.MacciottaN.P.2014Use of Locally Weighted Scatterplot Smoothing (LOWESS) Regression to Study Selection Signatures in Piedmontese and Italian Brown Cattle BreedsAnimal Genetics4511110.1111/age.1207623889699Search in Google Scholar

Pollak, E. (1983): A New Method for Estimating the Effective Population Size from Allele Frequency Changes. Genetics 104, 531–548.PollakE.1983A New Method for Estimating the Effective Population Size from Allele Frequency ChangesGenetics10453154810.1093/genetics/104.3.531120209317246147Search in Google Scholar

Porto-Neto, L.R., Kijas, J.W. and A. Reverter (2014): The Extent of Linkage Disequilibrium in Beef Cattle Breeds Using High-Density SNP Genotypes. Genetics, Selection, Evolution 46, 22.Porto-NetoL.R.KijasJ.W.ReverterA.2014The Extent of Linkage Disequilibrium in Beef Cattle Breeds Using High-Density SNP GenotypesGenetics, Selection, Evolution462210.1186/1297-9686-46-22402122924661366Search in Google Scholar

Prasad, A., Schnabel, R.D., McKay, S.D., Murdoch, B., Stothard, P., Kolbehdari, D., Wang, Z., Taylor, J.F. and S.S. Moore (2008): Linkage Disequilibrium and Signatures of Selection on Chromosomes 19 and 29 in Beef and Dairy Cattle. Animal Genetics 39, 597–605.PrasadA.SchnabelR.D.McKayS.D.MurdochB.StothardP.KolbehdariD.WangZ.TaylorJ.F.MooreS.S.2008Linkage Disequilibrium and Signatures of Selection on Chromosomes 19 and 29 in Beef and Dairy CattleAnimal Genetics3959760510.1111/j.1365-2052.2008.01772.x265938818717667Search in Google Scholar

Qanbari, S. and H. Simianer (2014): Mapping Signatures of Positive Selection in the Genome of Livestock. Livestock Science, Genomics Applied to Livestock Production 166, 133–143.QanbariS.SimianerH.2014Mapping Signatures of Positive Selection in the Genome of LivestockLivestock Science, Genomics Applied to Livestock Production16613314310.1016/j.livsci.2014.05.003Search in Google Scholar

Qanbari, S., Pimentel, E.C.G., Tetens, J., Thaller, G., Lichtner, P., Sharifi, A.R. and H. Simianer (2010): The Pattern of Linkage Disequilibrium in German Holstein Cattle. Animal Genetics 41, 346–56.QanbariS.PimentelE.C.G.TetensJ.ThallerG.LichtnerP.SharifiA.R.SimianerH.2010The Pattern of Linkage Disequilibrium in German Holstein CattleAnimal Genetics413465610.1111/j.1365-2052.2009.02011.x20055813Search in Google Scholar

Ramey, H.R., Decker, J.E., McKay, S.D., Rolf, M.M., Schnabel, R.D. and J.F. Taylor (2013): Detection of Selective Sweeps in Cattle Using Genome-Wide SNP Data. BMC Genomics 14, 382.RameyH.R.DeckerJ.E.McKayS.D.RolfM.M.SchnabelR.D.TaylorJ.F.2013Detection of Selective Sweeps in Cattle Using Genome-Wide SNP DataBMC Genomics1438210.1186/1471-2164-14-382368155423758707Search in Google Scholar

Randhawa, I.A.S., Khatkar, M.S., Thomson, P.C. and H.W. Raadsma (2014): Composite Selection Signals Can Localize the Trait Specific Genomic Regions in Multi-Breed Populations of Cattle and Sheep. BMC Genetics 15, 34.RandhawaI.A.S.KhatkarM.S.ThomsonP.C.RaadsmaH.W.2014Composite Selection Signals Can Localize the Trait Specific Genomic Regions in Multi-Breed Populations of Cattle and SheepBMC Genetics153410.1186/1471-2156-15-34Search in Google Scholar

Schlötterer, C. (2003): Hitchhiking Mapping – Functional Genomics from the Population Genetics Perspective. Trends in Genetics 19, 32–38.SchlöttererC.2003Hitchhiking Mapping – Functional Genomics from the Population Genetics PerspectiveTrends in Genetics19323810.1016/S0168-9525(02)00012-4Search in Google Scholar

Schöfl, G. and C. Schlötterer (2004): Patterns of Microsatellite Variability Among X Chromosomes and Autosomes Indicate a High Frequency of Beneficial Mutations in Non-African D. Simulans. Molecular Biology and Evolution 21, 1384–1390.SchöflG.SchlöttererC.2004Patterns of Microsatellite Variability Among X Chromosomes and Autosomes Indicate a High Frequency of Beneficial Mutations in Non-African DSimulans. Molecular Biology and Evolution211384139010.1093/molbev/msh13215044592Search in Google Scholar

Schwarzenbacher, H., Dolezal, M., Flisikowski, K., Seefried, F., Wurmser, C., Schlötterer, C. and R. Fries (2012): Combining Evidence of Selection with Association Analysis Increases Power to Detect Regions Influencing Complex Traits in Dairy Cattle. BMC Genomics 13, 48.SchwarzenbacherH.DolezalM.FlisikowskiK.SeefriedF.WurmserC.SchlöttererC.FriesR.2012Combining Evidence of Selection with Association Analysis Increases Power to Detect Regions Influencing Complex Traits in Dairy CattleBMC Genomics134810.1186/1471-2164-13-48330558222289501Search in Google Scholar

Slatkin, M. (2008): Linkage Disequilibrium — Understanding the Evolutionary Past and Mapping the Medical Future. Nature Reviews Genetics 9, 477–485.SlatkinM.2008Linkage Disequilibrium — Understanding the Evolutionary Past and Mapping the Medical FutureNature Reviews Genetics947748510.1038/nrg2361512448718427557Search in Google Scholar

Smith, J.M. and J. Haigh (1974): The Hitch-Hiking Effect of a Favourable Gene. Genetical Research 23, 23–35.SmithJ.M.HaighJ.1974The Hitch-Hiking Effect of a Favourable GeneGenetical Research23233510.1017/S0016672300014634Search in Google Scholar

Stella, A., Ajmone-Marsan, P., Lazzari, B. and P. Boettcher (2010): Identification of Selection Signatures in Cattle Breeds Selected for Dairy Production. Genetics 185, 1451–1461.StellaA.Ajmone-MarsanP.LazzariB.BoettcherP.2010Identification of Selection Signatures in Cattle Breeds Selected for Dairy ProductionGenetics1851451146110.1534/genetics.110.116111292776920479146Search in Google Scholar

Sved, J. A., Cameron, E.C. and A.S. Gilchrist (2013): Estimating Effective Population Size from Linkage Disequilibrium between Unlinked Loci: Theory and Application to Fruit Fly Outbreak Populations. PLoS ONE 8, e69078.SvedJ. A.CameronE.C.GilchristA.S.2013Estimating Effective Population Size from Linkage Disequilibrium between Unlinked Loci: Theory and Application to Fruit Fly Outbreak PopulationsPLoS ONE8e6907810.1371/journal.pone.0069078372088123894410Search in Google Scholar

Tenesa, A., Navarro, P., Hayes, B.J., Duffy, D.L., Clarke, G.M., Goddard, M.E and P.M. Visscher (2007): Recent Human Effective Population Size Estimated from Linkage Disequilibrium. Genome Research 17, 520–526.TenesaA.NavarroP.HayesB.J.DuffyD.L.ClarkeG.M.GoddardM.EVisscherP.M.2007Recent Human Effective Population Size Estimated from Linkage DisequilibriumGenome Research1752052610.1101/gr.6023607183209917351134Search in Google Scholar

Utsunomiya, Y.T., do Carmo, A.S., Carvalheiro, R., Neves, H.H.R., Matos, M.C., Zavarez, L.B., Pérez O’Brien, A.M. et al. (2013): Genome-Wide Association Study for Birth Weight in Nellore Cattle Points to Previously Described Orthologous Genes Affecting Human and Bovine Height. BMC Genetics 14, 52.UtsunomiyaY.T.do CarmoA.S.CarvalheiroR.NevesH.H.R.MatosM.C.ZavarezL.B.Pérez O’BrienA.M.et al2013Genome-Wide Association Study for Birth Weight in Nellore Cattle Points to Previously Described Orthologous Genes Affecting Human and Bovine HeightBMC Genetics145210.1186/1471-2156-14-52368332723758625Search in Google Scholar

Vitti, J.J., Grossman, S.R. and P.C. Sabeti (2013): Detecting Natural Selection in Genomic Data. Annual Review of Genetics 47, 97–120.VittiJ.J.GrossmanS.R.SabetiP.C.2013Detecting Natural Selection in Genomic DataAnnual Review of Genetics479712010.1146/annurev-genet-111212-13352624274750Search in Google Scholar

Waples, R.S. (1989): A Generalized Approach for Estimating Effective Population Size from Temporal Changes in Allele Frequency. Genetics 121, 379–391.WaplesR.S.1989A Generalized Approach for Estimating Effective Population Size from Temporal Changes in Allele FrequencyGenetics12137939110.1093/genetics/121.2.37912036252731727Search in Google Scholar

Waples, R.S. (2010): Spatial-Temporal Stratifications in Natural Populations and How They Affect Understanding and Estimation of Effective Population Size. Molecular Ecology Resources 10, 785–796.WaplesR.S.2010Spatial-Temporal Stratifications in Natural Populations and How They Affect Understanding and Estimation of Effective Population SizeMolecular Ecology Resources1078579610.1111/j.1755-0998.2010.02876.x21565090Search in Google Scholar

Waples, R.K., Larson, W.A. and R.S. Waples (2016): Estimating Contemporary Effective Population Size in Non-Model Species Using Linkage Disequilibrium across Thousands of Loci. Heredity 117, 233–240.WaplesR.K.LarsonW.A.WaplesR.S.2016Estimating Contemporary Effective Population Size in Non-Model Species Using Linkage Disequilibrium across Thousands of LociHeredity11723324010.1038/hdy.2016.60502675827553452Search in Google Scholar

Weir, B.S. and C.C. Cockerham (1984): Estimating F-Statistics for the Analysis of Population Structure. Evolution 38, 1358–1370.WeirB.S.CockerhamC.C.1984Estimating F-Statistics for the Analysis of Population StructureEvolution381358137010.1111/j.1558-5646.1984.tb05657.x28563791Search in Google Scholar

Willi, Y., Van Buskirk, J. and A.A. Hoffmann (2006): Limits to the Adaptive Potential of Small Populations. Annual Review of Ecology, Evolution, and Systematics 37, 433–458.WilliY.Van BuskirkJ.HoffmannA.A.2006Limits to the Adaptive Potential of Small PopulationsAnnual Review of Ecology, Evolution, and Systematics3743345810.1146/annurev.ecolsys.37.091305.110145Search in Google Scholar

Wright, S. (1922): Coefficients of Inbreeding and Relationship. The American Naturalist 56, 330–338.WrightS.1922Coefficients of Inbreeding and RelationshipThe American Naturalist5633033810.1086/279872Search in Google Scholar

Wright, S. (1931): Evolution in Mendelian Populations. Genetics 16, 97–159.WrightS.1931Evolution in Mendelian PopulationsGenetics169715910.1093/genetics/16.2.97120109117246615Search in Google Scholar

eISSN:
0006-5471
Langue:
Anglais
Périodicité:
4 fois par an
Sujets de la revue:
Life Sciences, Ecology, other