À propos de cet article

Citez

Ajuwon O.R., Idowu O.M.O., Afolabi S.A., Kehinde B.O., Oguntola O.O., Olatun-bosun K.O. (2011). The effects of dietary copper supplementation on oxidative and antioxidant systems in broiler chickens. Arch. Zootec., 60: 275–282.10.4321/S0004-05922011000200012Search in Google Scholar

Albanese A., Tang P.S., Chan W.C.W. (2012). The effect of nanoparticle size, shape, and surface chemistry on biological systems. Annu. Rev. Biomed. Eng., 14: 1–16.10.1146/annurev-bioeng-071811-150124Search in Google Scholar

Amstad P., Moret R., Cerutti P. (1994). Glutathione peroxidase compensates for the hypersensitivity of Cu, Zn-superoxide dismutase overproducers to oxidant stress. J. Biol. Chem., 269: 1606–1609.10.1016/S0021-9258(17)42068-0Search in Google Scholar

Bao Y.M., Choct M., Iji P., Bruerton A. (2007). Effect of organically complexed copper, iron, manganese and zinc on broiler performance, mineral excretion and accumulation in tissues. J. Appl. Poultry Res., 16: 448–455.10.1093/japr/16.3.448Search in Google Scholar

Bunglavan S.J., Dass A.K.G., Shrivastava S. (2014). Use of nanoparticles as feed additives to improve digestion and absorption in livestock. Livestock Res. Int., 2: 36–47.Search in Google Scholar

Dinant H.J., Dijkmans B.A.C. (1999). New therapeutic targets for rheumatoid arthritis. Pharm. World Sci., 21: 49–59.10.1023/A:1008661630718Search in Google Scholar

EFSA, Panel on Additives and Products or Substances used in Animal Feed (FEEDAP). (2016). Revision of the currently authorised maximum copper content in complete feed. EFSA J., 14: 4563.10.2903/j.efsa.2016.4563Search in Google Scholar

El Sabry M.I., Mc Millin K.W., Sabliov C.M. (2018). Nanotechnology considerations for poultry and livestock production systems – a review. Ann. Anim. Sci., 18: 319–334.10.1515/aoas-2017-0047Search in Google Scholar

Freedman J.H., Wolterbeek H.T. (1989). The role of glutathione in copper metabolism and toxicity. J. Biol. Chem., 264: 5590–5605.10.1016/S0021-9258(18)83589-XSearch in Google Scholar

Hill E.K., Li J. (2017). Current and future prospects for nanotechnology in animal production. J. Anim. Sci. Biotechnol., 8: 26.10.1186/s40104-017-0157-5Search in Google Scholar

Hussain N., Jaitley V., Florence A.T. (2001). Recent advances in the understanding of uptake of microparticles across the gastrointestinal lymphatics. Adv. Drug Deliv. Rev., 50: 107–142.10.1016/S0169-409X(01)00152-1Search in Google Scholar

Hybrid Turkeys (2013). Nutrient Guidelines. http://resources.hybridturkeys.com/nutrition/commercial-guidelines (accessed 09.07.2018).Search in Google Scholar

Kim J.W., Chao P.Y., Allen A. (1992). Inhibition of elevated hepatic glutathione abolishes copper deficiency cholesterolemia. FASEB J., 6: 2467–2471.10.1096/fasebj.6.7.1563598Search in Google Scholar

Klasing K.C. (1998). Nutritional modulation of resistance to infectious diseases. Poultry Sci., 77: 1119–1125.10.1093/ps/77.8.1119Search in Google Scholar

Maheshwari S. (2013). Environmental impacts of poultry production. Poult. Fish Wildl. Sci., 1: 101–103.10.4172/pfw.1000101Search in Google Scholar

Majewski M., Ognik K., Zduńczyk P., Juśkiewicz J. (2017). Effect of dietary copper nanoparticles versus one copper (II) salt: analysis of vasoreactivity in a rat model. Pharmacol. Rep., 69: 1282–1288.10.1016/j.pharep.2017.06.001Search in Google Scholar

Makarski B., Gortat M., Lechowski J.,Żukiewicz-Sobczak W., Sobczak P., Zawiślak K. (2014). Impact of copper (Cu) at the dose of 50 mg on haematological and biochemical blood parameters in turkeys, and level of Cu accumulation in the selected tissues as a source of information on product safety for consumers. Ann. Agric. Environ. Med., 21: 567–570.10.5604/12321966.1120603Search in Google Scholar

Malavolta M., Piacenza F., Basso A., Giacconi R., Costarelli L., Mocchegia-ni E. (2015). Serum copper to zinc ratio: relationship with aging and health status. Mech. Ageing. Dev., 151: 93–100.10.1016/j.mad.2015.01.004Search in Google Scholar

Mc Cord J.M. (1983). The superoxide free radical: its biochemistry and pathophysiology. Surgery, 94: 412–414.10.1016/0022-2860(83)90301-0Search in Google Scholar

Mikulski D., Jankowski J., Zduńczyk Z., Wróblewska M., Mikulska M. (2009). Copper balance, bone mineralization and the growth performance of turkeys fed diet with two types of Cu supplements. J. Anim. Feed Sci., 18: 677–688.10.22358/jafs/66441/2009Search in Google Scholar

Nollet L., Huyghebaert G., Spring P. (2008). Effect of different levels of dietary organic (Biolpex) trace minerals on live performance of broiler chickens by growth phases. J. Appl. Poultry Res., 17: 109–115.10.3382/japr.2007-00049Search in Google Scholar

NRC (1994). Nutrient Requirements of Poultry. 9th rev. ed. Natl. Acad. Press, Washington, DC.Search in Google Scholar

Ognik K., Wertelecki T. (2012). Effect of different vitamin E sources and levels on selected oxidative status indices in blood and tissues as well as on rearing performance of slaughter turkey hens. J. Appl. Poultry Res., 2: 259–271.10.3382/japr.2011-00366Search in Google Scholar

Ognik K., Stępniowska A., Cholewińska E., Kozłowski K. (2016). The effect of administration of copper nanoparticles to chickens in drinking water on estimated intestinal absorption of iron, zinc, and calcium. Poultry Sci., 95: 2045–2051.10.3382/ps/pew200Search in Google Scholar

Percival S.S. (1998). Copper and immunity. Am. J. Clin. Nutr., 67: 1064S–1068S.10.1093/ajcn/67.5.1064SSearch in Google Scholar

Samanta B., Ghosh P.R., Biswas A., Das S.K. (2011). The effects of copper supplementation on the performance and hematological parameters of broiler chickens. Asian-Australas. J. Anim. Sci., 24: 1001–1006.10.5713/ajas.2011.10394Search in Google Scholar

Smulikowska S., Rutkowski A. (2005). Recommended Allowances and Nutritive Value of Feedstuffs – Poultry Feeding Standards (in Polish). 5th ed. Smulikowska, S., Rutkowski, A., Eds. The Kielanowski Institute of Animal Physiology and Nutrition, Jablonna, PAS, Poland.Search in Google Scholar

Sunderman Jr F.W., Nomoto S. (1970). Measurement of human serum ceruloplasmin by its p-phenylenediamine oxidase activity. Clin. Chem., 16: 903–910.10.1093/clinchem/16.11.903Search in Google Scholar

Tomaszewska E., Muszyński S., Ognik K., Dobrowolski P., Kwiecień M., Juśkiewicz J., Chocyk D., Świetlicki M., Blicharski T., Gładyszewska B. (2017). Comparison of the effect of dietary copper nanoparticles with copper (II) salt on bone geometric and structural parameters as well as material characteristics in a rat model. J. Trace Elem. Med. Biol., 42: 103–110.10.1016/j.jtemb.2017.05.002Search in Google Scholar

Wang C., Wang M.Q., Ye S.S., Tao W.J., Du Y.J. (2011). Effects of copper-loaded chitosan nanoparticles on growth and immunity in broilers. Poultry Sci., 90: 2223–2228.10.3382/ps.2011-01511Search in Google Scholar

Xiang-Qi Z., Zhang K.-Y., Ding X.-M., Bai S.-P. (2009). Effects of dietary supplementation with copper sulfate or tribasic copper chloride on carcass characteristics, tissular nutrients deposition and oxidation in broilers. Pakistan J. Nutr., 8: 1114–1119.10.3923/pjn.2009.1114.1119Search in Google Scholar

eISSN:
2300-8733
Langue:
Anglais
Périodicité:
4 fois par an
Sujets de la revue:
Life Sciences, Biotechnology, Zoology, Medicine, Veterinary Medicine