Accès libre

How Pigs Influence Indoor Air Properties in Intensive Farming: Practical Implications – A Review

À propos de cet article

Citez

Aarnink A.J.A., Schrama J.W., Heetkamp M.J.W., Stefanowska J., Huynh T.T.T. (2006). Temperature and body weight affect fouling of pig pens. J. Anim. Sci., 84: 2224–2231.10.2527/jas.2005-521Search in Google Scholar

Aarnink A.J.A., Huynh T.T.T., Bikker P. (2016). Modelling heat production and heat loss in growing-finishing pigs. CIGR-AgEng Conference, Aarhus, Denmark, 26–29.06.2016, 8 pp.Search in Google Scholar

Anderson D.L. (2002). National Swine Registry. Available at www.nationalswine.com.Search in Google Scholar

ARC (1981). The Nutrient Requirements of Pigs. Commonwealth Agricultural Bureaux, Slough, England, 307 pp.Search in Google Scholar

ASABE (2012). EP270.5. Design of ventilation systems for poultry and livestock shelters. St. Joseph, MI, USA, 18 pp.Search in Google Scholar

Baxter S. (1984). Intensive pig production: environmental management and design. Granada, London, England, 588 pp.Search in Google Scholar

Blanes V., Pedersen S. (2005). Ventilation flow in pig houses measured and calculated by carbon dioxide, moisture and heat balance equations. Biosys. Eng., 92: 483–493.10.1016/j.biosystemseng.2005.09.002Search in Google Scholar

Blaxter K.L. (1989). Energy Metabolism in Animals and Man. Cambridge University Press, Cambridge, 336 pp.Search in Google Scholar

Bligh J., Johnson K.G. (1973). Glossary of terms for thermal physiology. J. Appl. Physiol., 35: 941–961.10.1152/jappl.1973.35.6.941Search in Google Scholar

Bligh J. (1985). Temperature regulation. In: Stress physiology in livestock, Vol. I, Basic Principles, Yousef M.K. (ed). CRC Press Inc., Boca Raton, USA, pp. 76–96.Search in Google Scholar

Bond T.E., Kelly C.F., Heitman Jr. H. (1959). Hog house air conditioning and ventilation data. Trans. ASAE, 2: 1–4.10.13031/2013.41147Search in Google Scholar

Brown-Brandl T.M., Nienaber J.A., Xin H., Gates R.S. (2004). A literature review of swine heat production. Trans. ASAE, 47: 259–270.10.13031/2013.15867Search in Google Scholar

Brown-Brandl T.M., Hayes M.D., Xin H., Nienaber J.A., Li H., Eigenberg R.A., Stinn J.P., Shepherd T.A. (2014). Heat and moisture production of modern swine. Trans. ASHRAE, 120: 469–489.Search in Google Scholar

Cena K.M. (1974). Radiative heat loss from animals and man. In: Heat loss from animals and man, Monteith J.L., Mount L.E. (eds). Butterworths, London, UK, pp. 31–58.10.1016/B978-0-408-70652-0.50009-3Search in Google Scholar

CIGR (1999). CIGR Handbook of agricultural engineering. Vol. II. Animal production and aquacultural engineering. ASAE, St. Joseph, MI, USA, 359 pp.Search in Google Scholar

CIGR (2002). Climatization of animal houses. Heat and moisture production at animal and house levels. CIGR Section II, 4th Report of Working Group on Climatization of Animal Houses, Pedersen S., Sällvik K. (eds). Danish Institute of Agricultural Sciences, Horsens, Denmark,45 pp.Search in Google Scholar

Clark J.A., Mc Arthur A.J. (1994). Thermal exchanges. In: Livestock housing, Wathes C.M., Charles D.R. (eds). CAB International, Wallingford, UK, pp. 97–122.Search in Google Scholar

Dolz N., Babot D., Alvarez-Rodríguez J., Forcada F. (2015). Improving the environment for weaned piglets using polypropylene fabrics above the animals in cold periods. Int. J. Biometereol., 59: 1839–1847.10.1007/s00484-015-0991-0Search in Google Scholar

Dong H., Zhu Z., Shang B., Kang G., Zhu H., Xin H. (2007). Greenhouse gas emissions from swine barns of various production stages in suburban Beijing, China. Atmos. Environ., 41: 2391–2399.10.1016/j.atmosenv.2006.11.005Search in Google Scholar

Eigenberg R.A., Brown-Brandl T., Nienaber J.A. (2002). Development of a respiration rate monitor for swine. Trans. ASAE, 45: 1599–1603.10.13031/2013.11066Search in Google Scholar

Forcada F., Guillén R., Babot D., Álvarez-Rodríguez J. (2014). Environmental conditions in a finishing unit in the Ebro Valley. The effect of location with regard to the prevailing winds (in Spanish). ITEA, 110: 236–250.10.12706/itea.2014.015Search in Google Scholar

Hacker R.R., Ogilvie J.R., Morrison W.D., Kains F. (1994). Factors affecting excretory behaviour of pigs. J. Anim. Sci., 72: 1455–1460.10.2527/1994.7261455xSearch in Google Scholar

Hahn G.L., Hugh-Jones M.E. (1989). Critical temperatures – a discussion. WMO Technical Note 1191: Animal health and production at extremes of weather, Geneva, Switzerland, pp. 13–17.Search in Google Scholar

Harmon J.D., Xin H., Shao J. (1997). Energetics of segregated early weaned pigs. Trans. ASAE, 40: 1693–1698.10.13031/2013.21414Search in Google Scholar

Hoff S.J. (2013). The impact of ventilation and thermal environment on animal health, welfare and performance. In: Animal housing, Aland A., Banhazi T. (eds). Wageningen Academic Publishers, The Netherlands, pp. 209–235.10.3920/978-90-8686-771-4_11Search in Google Scholar

Holman J.P. (2002). Heat transfer. 9th ed. McGraw-Hill, New York, NY, USA, 758 pp.Search in Google Scholar

Huynh T.T.T., Aarnink A.J.A., Gerrits W.J.J., Heetkamp M.J.H., Canh T.T., Spool-der H.A.M., Verstegen M.W.A., Kemp B. (2005 a). Thermal behaviour of growing pigs in response to high ambient temperature and humidity. Appl. Anim. Behav. Sci., 91: 1–16.10.1016/j.applanim.2004.10.020Search in Google Scholar

Huynh T.T.T., Aarnink A.J.A., Verstegen M.W.A., Gerrits W.J.J., Heetkamp M.J.W., Kemp B., Canh T.T. (2005 b). Effects of increasing temperatures on physiological changes in pigs at different relative humidities. J. Anim. Sci., 83: 1385–1396.10.2527/2005.8361385x15890816Search in Google Scholar

Huynh T.T.T., Aarnink A.J.A., Hettkamp M.J.W., Verstegen M.W.A., Kemp B. (2007). Evaporative heat loss from group-housed growing pigs at high ambient temperatures. J. Therm. Biol., 32: 293–299.10.1016/j.jtherbio.2007.03.001Search in Google Scholar

Ingram D. (1965). Evaporative cooling in the pig. Nature, 4995: 415–416.10.1038/207415a0Search in Google Scholar

Johnson D.E., Johnson K.A., Baldwin R.L. (1990). Changes in liver and gastrointestinal tract energy demands in response to physiological work-load in ruminants. J. Nutr., 120: 649–655.10.1093/jn/120.6.649Search in Google Scholar

Kielanowsky J. (1965). Estimates of the energy cost of protein deposition in growing animals. Proc. III Symposium of Energy Metabolism. EAAP No.11, Academic Press, London, UK, pp.13–20.Search in Google Scholar

Kleiber M. (1975). The fire of life. An introduction to animal energetics. R.E. Krieger Publishing Co., New York, 478 pp.Search in Google Scholar

Koong L.J., Ferrell C.L., Nienaber J.A. (1985). Assessment of interrelationships among levels of intake and production, organ size and fasting heat production in growing animals. J. Nutr., 115: 1383–1390.10.1093/jn/115.10.1383Search in Google Scholar

Labussière E., Dubois S., Milguen J., Noblet J. (2013). Partitioning of heat production in growing pigs as a tool to improve the determination of efficiency of energy utilization. Front. Physiol., 4: 146.10.3389/fphys.2013.00146Search in Google Scholar

Lu Y., Hayes M., Stinn J., Brown-Brandl T., Xin H. (2017). Evaluating ventilation rates based on new heat and moisture production data for swine production. Trans. ASABE, 60: 237–245.10.13031/trans.11888Search in Google Scholar

Moller H.B., Sommer S.G., Ahring B.K. (2004). Biological degradation and greenhouse gas emissions during pre-storage of liquid animal manure. J. Environ. Qual., 33: 27–36.10.2134/jeq2004.2700Search in Google Scholar

Mount L.E. (1974). The concept of thermal neutrality. In: Heat loss from animals and man, Monteith J.L., Mount L.E. (eds). Butterworths, London, UK, pp. 425–439.10.1016/B978-0-408-70652-0.50027-5Search in Google Scholar

Mount L.E. (1979). Adaptation to thermal environment. Man and his productive animals. Edward Arnold Publishers, London, UK, 333 pp.Search in Google Scholar

Mrema C., Gumbe L.O., Chepete H.J., Agullo J.O. (2011). Rural structures in the tropics. Design and development. FAO. CTA, Wageningen, The Netherlands, 481 pp.Search in Google Scholar

Ni J.Q., Vinckier C., Coenegrachts J., Hendriks J. (1999). Effect of manure on ammonia emission from a fattening pig house with partly slatted floor. Livest. Prod. Sci., 59: 25–31.10.1016/S0301-6226(99)00002-0Search in Google Scholar

Noblet J., Shi X.C., Dubois S. (1993). Energy cost of standing activity in sows. Livest. Prod. Sci., 34: 127–136.10.1016/0301-6226(93)90041-FSearch in Google Scholar

Ota H., Whitehead J.A., Davey R.J. (1975). Heat production of male and female piglets. J. Anim. Sci., 41: 436–437.Search in Google Scholar

Pedersen S., Takai H., Johnsen J.O., Metz J.H.M., Groot Koerkamp P.W.G., Uenk G.H., Phillips V.R., Holden M.R., Sneath R.W., Short J.L., White R.P., Har-tung J., Seedorf J., Schröder M., Linkert K.H.H., Wathes C.M. (1998). A comparison of three balance methods for calculating ventilation rates in livestock buildings. J. Agric. Eng. Res., 701: 25–37.10.1006/jaer.1997.0276Search in Google Scholar

Pedersen S., Blanes-Vidal V., Joergensen H., Chwalibog A., Haeussermann A., Heetkamp M.J.W., Aarnink A.J.A. (2008). Carbon dioxide production in animal houses: A literature review. CIGR Ejournal, Vol. X, Manuscript BC 08 008.Search in Google Scholar

Pekas J.C., Wray J.E. (1991). Principal gastrointestinal variables associated with metabolic heat production in pigs: statistical cluster analyses. J. Nutr., 121: 231–239.10.1093/jn/121.2.231Search in Google Scholar

Philippe F.X., Nicks B. (2014). Review on greenhouse gas emissions from pig houses: Production of carbon dioxide, methane and nitrous oxide by animals and manure. Agric. Ecosyst. Environ., 199: 10–25.10.1016/j.agee.2014.08.015Search in Google Scholar

Philippe F.X., Laitat M., Canart B., Vandenheede M., Nicks B. (2007). Comparison of ammonia and greenhouse gas emissions during the fattening of pigs: kept either on fully slatted floor or on deep litter. Livest. Sci., 111: 144–152.10.1016/j.livsci.2006.12.012Search in Google Scholar

Prunier A., Messiasde Braganqa M., Le Dividich J. (1997). Influence of high ambient temperature on performance reproductive sows. Livest. Prod. Sci., 52: 123–133.10.1016/S0301-6226(97)00137-1Search in Google Scholar

Quiniou N., Noblet J. (1995). Prediction of tissular body composition from protein and lipid deposition in growing pigs. J. Anim. Sci., 73: 1567–1575.10.2527/1995.7361567xSearch in Google Scholar

Quiniou N., Noblet J.,van Milgen J., Dubois S. (2001). Modelling heat production and energy balance in group-housed growing pigs exposed to low or high ambient temperatures. Br. J. Nutr., 85: 97–106.10.1079/BJN2000217Search in Google Scholar

Schauberger G., Piringer M., Petz E. (2000). Steady-state balance model to calculate the indoor climate of livestock buildings, demonstrated for finishing pigs. Int. J. Biometereol., 43: 154–162.10.1007/s004840050002Search in Google Scholar

Sousa P., Pedersen S. (2004). Ammonia emission from fattening pig houses in relation to animal activity and carbon dioxide production. CIGR Ejournal, VI, manuscript BC 04 003.Search in Google Scholar

Stinn J.P., Xin H. (2014). Heat and moisture production rates of a modern U.S. swine breeding, gestation and farrowing facility. Trans. ASABE, 57: 1517–1528.10.13031/trans.57.10711Search in Google Scholar

Swindle M.M., Makin A., Herron A.J., Clubb Jr, F.J., Frazier K.S. (2012). Swine as models in biomedical research and toxicology testing. Vet. Pathol., 49: 344–356.10.1177/0300985811402846Search in Google Scholar

Tess M.W., Dickerson G.E., Nienaber J.A., Ferrell C.L. (1984). The effects of body composition on fasting heat production in pigs. J. Anim. Sci., 58: 99–110.10.2527/jas1984.58199xSearch in Google Scholar

van Milgen J., Noblet J. (2000). Modelling energy expenditure in pigs. In: Modelling nutrient utilization in farm animals. McNamara, J.P., France, J., Beever, D.E. (eds). CAB International, Oxon, U.K., pp. 103–114.10.1079/9780851994499.0103Search in Google Scholar

van Milgen J., Noblet J. (2003). Partitioning of energy intake to heat, protein, and fat in growing pigs. J. Anim. Sci., 81 (E. Suppl. 2): E86–E93.Search in Google Scholar

van Milgen J., Noblet J., Dubois S., Bernier J.F. (1997). Dynamic aspects of oxygen consumption and carbon dioxide production in swine. Br. J. Nutr., 78: 397–410.10.1079/BJN19970159Search in Google Scholar

van Milgen J., Bernier J.F., Lecozler Y., Dubois S., Noblet J. (1998). Major determinants of fasting heat production and energetic cost of activity in growing pigs of different body weight and breed/castration combination. Br. J. Nutr., 79: 509–517.10.1079/BJN19980089Search in Google Scholar

Yousef M.K. (1985). Stress physiology in livestock. Volume 1, Basic principles. CRC Press, Boca Raton, Florida, USA, 217 pp.Search in Google Scholar

Zong C., Zhang G., Feng Y., Ni J.Q. (2014). Carbon dioxide production from a fattening pig building with partial pit ventilation system. Biosyst. Eng., 126: 56–68.10.1016/j.biosystemseng.2014.07.011Search in Google Scholar

eISSN:
2300-8733
Langue:
Anglais
Périodicité:
4 fois par an
Sujets de la revue:
Life Sciences, Biotechnology, Zoology, Medicine, Veterinary Medicine