Accès libre

Comparison Analysis of Cockroft – Latham Criterion Values of Commercial Plasticine and C45 Steel

À propos de cet article

Citez

1. Altan T., Breitling J., Taupin E., Wu W-T. (1996), Material fracture and burr formation in blanking results of FEM simulations and comparison with experiments, Journal of Materials Processing Technology, 58, 68-78.10.1016/0924-0136(96)02288-1Search in Google Scholar

2. Altan T., Vazquez V., (2000), New Concepts in die design - physical and computer modeling applications, Journal of Materials Processing Technology, 98, 212-223.10.1016/S0924-0136(99)00202-2Search in Google Scholar

3. Antolik Ł., (2014), Methodology of Fatigue Cracks Detection in Railway Axles in Comparison with European Standards Requirements (in Polish), Problemy kolejnictwa, 165, 7-19.Search in Google Scholar

4. Arikawa T., Kakimoto H., (2014), Prediction of surface crack in hot forging by numerical simulation, Procedia Engineering, 81, 474-479.10.1016/j.proeng.2014.10.025Search in Google Scholar

5. Asai K., Kitamura K., (2014), Estimation of frictional property of lubricants for hot forging of steel using low-speed ring compression test, Procedia Engineering, 81,1970-1975.10.1016/j.proeng.2014.10.266Search in Google Scholar

6. Assempour A., Farahani S., Naybodi A., (2012). A general methodology for bearing design in non-symmetric T-shaped sections in extrusion process, Journal of Materials Processing Technology, 212(1), 249-261.10.1016/j.jmatprotec.2011.09.010Search in Google Scholar

7. Assempour A., Razi S., (2002). Determination of load and strain-stress distributions in hot closed die forging using the plasticine modeling technique, Archive of SID, 2(15), 167-172.Search in Google Scholar

8. Bariani P.F., Bylya O., Ghiotti A., Novella M.F., (2014), Modelling of AA6082 Ductile Damage Evolution under Hot Rolling Conditions, Procedia Engineering, 81, 221-226.10.1016/j.proeng.2014.09.154Search in Google Scholar

9. Bruschi S., Davey K., Krishnamurthy B., (2017), Physical modelling for metal forming processes, Procedia Engineering, 207, 1075-1080.10.1016/j.proeng.2017.10.1133Search in Google Scholar

10. Charoesunk K., Panich S., Uthaisangsuk V., (2017). Damage initiation and fracture loci for advances high strength steel sheets taking into account anisotropic behaviour. Journal of Materials Processing Technology, 248, 218-235.10.1016/j.jmatprotec.2017.05.035Search in Google Scholar

11. Cherkashina T., Mazur I., (2012), Mathematical and Physical Modeling of Soft Cobbing Process of Hot Rolling Steels, Material Science Forum, 704-705, 160-164.10.4028/www.scientific.net/MSF.704-705.160Search in Google Scholar

12. Cockroft M.G., Latham D.J, (1968). Ductility and the workability of metals, Journal of the Institute of Metals, 96, 33-39.Search in Google Scholar

13. Derpenski L., Seweryn A.,Szusta J., (2018), Damage accumulation and ductile fracture modeling of notched specimens under biaxial loading at room temperature, International Journal of Solids and Structures, 134, 1-19.10.1016/j.ijsolstr.2017.10.028Search in Google Scholar

14. Dziubinska A., Gontarz A., (2015), A new method for producing magnesium alloy twin-rib aircraft brackets, Aircraft Engineering and Aerospace Technology, 2(87), 180-188.10.1108/AEAT-10-2013-0184Search in Google Scholar

15. Eivani A. R., Jafarian H. R.,Mirghasemi S. M., Seyedein S. H. (2018), A comparison between routine vs. normalized Cockroft-Latham Fracture criteria for prediction of fracture during equal channel angular pressing, Engineering Fracture Mechanics, 199, 721-729.10.1016/j.engfracmech.2018.07.016Search in Google Scholar

16. Fu M. W., Li H., Lu J., Yang H., (2011), Ductile fracture: Experiments and computations, International Journal of Plasticity, 27, 147-180.10.1016/j.ijplas.2010.04.001Search in Google Scholar

17. Fuertes J. P., León J., Luis C. J., Luri R., Puertas I., Salcedo D., (2015), Comparative study of the damage attained with different specimens by FEM, Procedia Engineering, 132, 319-325.10.1016/j.proeng.2015.12.501Search in Google Scholar

18. Galan I. S., Perig A.V., (2017), The experimental verification of the known flow line models describing local flow during ECAE (ECAP), Letters on materials, 7(3), 209-217.10.22226/2410-3535-2017-3-209-217Search in Google Scholar

19. Gontarz A., Piesiak J., (2010), Crack model according to Cockroft-Latham criterion for magnesium alloy MA2 in hot forming conditions (in Polish), XXI(4), 217-227.Search in Google Scholar

20. Gontarz A., Winiarski G., (2015), Numerical and experimental study of producing flanges on hollow parts by extrusion with a movable sleeve, Archives of Metallurgy and Materials, 60, 1917-1921.10.1515/amm-2015-0326Search in Google Scholar

21. Kowalczyk L., (1995), Physical modeling of metal forming processes (in Polish),Technologii Eksploatacji, Radom.Search in Google Scholar

22. Lis K., Pater Z., Walczuk P., Wojcik L.,(2018), Preliminary analysis of a rotary compression test, Adv. Sci. Technol. Res. J, 12 (2), 77-82.10.12913/22998624/86812Search in Google Scholar

23. Lis K., Pater Z., Wojcik L.,(2016), Plastometric tests for plasticine as physical modelling material, Open Engineering, 6, 653-659.10.1515/eng-2016-0093Search in Google Scholar

24. Mizuno K., Komori K., (2009), Study on plastic deformation in cone-type rotary piercing process using model piercing mill for modeling clay, Journal of Materials Processing Technology, 209, 4994-5001.10.1016/j.jmatprotec.2009.01.022Search in Google Scholar

25. Moon Y.H., Van Tyne C.J., (2000), Validation via FEM and plasticine modeling of upper bound criteria of a process induced side surface defect in forgings, Journal of Materials Processing Technology, 99, 185-19610.1016/S0924-0136(99)00417-3Search in Google Scholar

26. Pater Z., Wojcik L.,(2017), Physical analysis of cross-wedge rolling process of a stepped shaft, Adv. Sci. Technol. Res. J., 11 (4), 60-67.10.12913/22998624/75966Search in Google Scholar

27. Pieres F. M. A., Song N., Wu S., (2016), Numerical analysis of damage evolution form materials with tension - compression asymmetry, Procedia Structural Integrity, 1, 273-280.10.1016/j.prostr.2016.02.037Search in Google Scholar

28. Rasty J., Sofuoglu H., (2000), Flow behaviour of plasticine used in physical modeling of metal forming process, Tribology International, 33, 523-529.10.1016/S0301-679X(00)00092-XSearch in Google Scholar