Accès libre

Antiproliferative evaluation of various aminoquinoline derivatives

À propos de cet article

Citez

1. T. I. Oprea and J. Mestres, Drug repurposing: Far beyond new targets for old drugs, AAPS J.14 (2012) 759–763.10.1208/s12248-012-9390-1Search in Google Scholar

2. T. T. Ashburn and K. B. Thor, Drug repositioning: identifying and developing new uses for existing drugs, Nat. Rev. Drug Discov.3 (2004) 673–683; https://doi.org/10.1038/nrd146810.1038/nrd146815286734Search in Google Scholar

3. V. R. Solomon and H. Lee, Chloroquine and its analogs: A new promise of an old drug for effective and safe cancer therapies, Eur. J. Pharmacol.625 (2009) 220–233; https://doi.org/10.1016/j.ejphar.2009.06.06310.1016/j.ejphar.2009.06.06319836374Search in Google Scholar

4. R. Duffy, C. Wade and R. Chang, Discovery of anticancer drugs from antimalarial natural products: a MEDLINE literature review, Drug Discov. Today17 (2012) 942–953.; https://doi.org/10.1016/j.drudis.2012.03.01310.1016/j.drudis.2012.03.01322504324Search in Google Scholar

5. T. Kimura, Y. Takabatake, A. Takahashi and Y. Isaka, Chloroquine in cancer therapy: A double-edged sword of autophagy, Cancer Res.73 (2013) 3–7; https://doi.org/10.1158/0008-547210.1158/0008-5472.CAN-12-2464Search in Google Scholar

6. R. H. van Huijsduijnen, R. Kiplin Guy, K. Chibale, R. K. Haynes, I. Peitz, G. Kelter, M. A. Phillips, J. L. Vennerstrom, Y. Yuthavong and T. N. C. Wells, Anticancer properties of distinct antimalarial drug classes, PLoS One8 (2013) e82962.10.1371/journal.pone.0082962387700724391728Search in Google Scholar

7. A. K. Abdel-Aziz, S. Shouman, E. El-Demerdash, M. Elgendy and A. B. Abdel-Naim, Chloroquine as a promising adjuvant chemotherapy together with sunitinib, Sci. Proc.1 (2014) Article ID e384; https://doi.org/10.14800/sp.38410.14800/sp.384Search in Google Scholar

8. F. Liu, Y. Shang and S.-Z. Chen, Chloroquine potentiates the anti-cancer effect of lidamycin on non-small cell lung cancer cells in vitro, Acta Pharmacol. Sin. 35 (2014) 645–652; https://doi.org/10.1038/aps.2014.310.1038/aps.2014.3481403824727941Search in Google Scholar

9. A. R. Choi, J. H. Kim, Y. H. Woo, H. S. Kim and S. Yoon, Anti-malarial drugs primaquine and chloroquine have different sensitization effects with anti-mitotic drugs in resistant cancer cells, Anticancer Res. 36 (2016) 1641–1648.10.21873/anticanres.11171Search in Google Scholar

10. A. Ganguli, D. Choudhury, S. Datta, S. Bhattacharya and G. Chakrabarti, Inhibition of autophagy by chloroquine potentiates synergistically anti-cancer property of artemisinin by promoting ROS dependent apoptosis, Biochimie107 (2014) 338–349; https://doi.org/10.1016/j.biochi.2014.10.00110.1016/j.biochi.2014.10.00125308836Search in Google Scholar

11. C. Verbaanderd, H. Maes, M. B. Schaaf, V. P. Sukhatme, P. Pantziarka, V. Sukhatme, P. Agostinis and G. Bouche, Repurposing drugs in oncology (ReDO) – chloroquine and hydroxychloroquine as anti-cancer agents, eCancer11 (2017) Article ID 781; https://doi.org/10.3332/ecancer.2017.78110.3332/ecancer.2017.781571803029225688Search in Google Scholar

12. F. Wang, J. Tang, P. Li, S. Si, H. Yu, X. Yang, J. Tao, Q. Lv, M. Gu, H. Yang and Z. Wang, Chloroquine enhances the radiosensitivity of bladder cancer cells by inhibiting autophagy and activating apoptosis, Cell. Physiol. Biochem.45 (2018) 54–66; https://doi.org/10.1159/00048622210.1159/00048622229316551Search in Google Scholar

13. L. Liu, C. Han, H. Yu, W. Zhu, H. Cui, L. Zheng, C. Zhang and L. Yue, Chloroquine inhibits cell growth in human A549 lung cancer cells by blocking autophagy and inducing mitochondrial-mediated apoptosis, Oncol. Rep.39 (2018) 2807–2816.Search in Google Scholar

14. A. Kamal A. Aziz, S. Shouman, E. El-Demerdash, M. Elgendy and A. B. Abdel-Naim, Chloroquine synergizes sunitinib cytotoxicity via modulating autophagic, apoptotic and angiogenic machineries, Chem. Biol. Interact.217 (2014) 28–40; https://doi.org/10.1016/j.cbi.2014.04.00710.1016/j.cbi.2014.04.00724751611Search in Google Scholar

15. G. W. Soo, J. H. Law, E. Kan, S. Y. Tan, W. Y. Lim, G. Chay, N. I. Bukhari and I. Segarra, Differential effects of ketoconazole and primaquine on the pharmacokinetics and tissue distribution of imatinib in mice, Anticancer Drugs21 (2010) 695–703.10.1097/CAD.0b013e32833c93b3Search in Google Scholar

16. Y. K. Wong, C. Xu, K. A. Kalesh, Y. He, Q. Lin, W. S. F. Wong, H. M. Shen and J. Wang, Artemisinin as an anticancer drug: Recent advances in target profiling and mechanisms of action, Med. Res. Rev.37 (2017) 1492–1517.10.1002/med.21446Search in Google Scholar

17. https://clinicaltrials.gov/ct2/home (last access May 26, 2019)Search in Google Scholar

18. https://en.wikipedia.org/wiki/WHO_Model_List_of_Essential_Medicines (last access May 27, 2019)Search in Google Scholar

19. N. Vale, R. Moreira and P. Gomes, Primaquine revisited six decades after its discovery, Eur. J. Med. Chem.44 (2009) 937–953; https://doi.org/10.1016/j.ejmech.2008.08.01110.1016/j.ejmech.2008.08.01118930565Search in Google Scholar

20. P. M. Njaria, J. Okombo, N. M. Njuguna and K. Chibale, Chloroquine-containing compounds: a patent review (2010 – 2014), Expert Opin. Therap. Patents25 (2015) 1003–1024; https://doi.org/10.1517/13543776.2015.105079110.1517/13543776.2015.1050791710371026013494Search in Google Scholar

21. S-J. Yeo, D-X. Liu, H-S. Kim and H. Park, Anti-malarial effect of novel chloroquine derivatives as agents for the treatment of malaria, Malaria J.16 (2017) 80; https://doi.org/10.1186/s12936-017-1725-z10.1186/s12936-017-1725-z531621328212631Search in Google Scholar

22. M. A. Avery, D. J. Weldon and K. M. Muraleedharan, Advances in the Discovery of New Antimalarials, in Comprehensive Medicinal Chemistry II (Eds. J. B. Taylor and D. J. Triggle), Vol. 7, Elsevier Ltd., 2007, pp. 765–814; https://doi.org/10.1016/B0-08-045044-X/00227-310.1016/B0-08-045044-X/00227-3Search in Google Scholar

23. K. Pavić, Z. Rajić, Z. Mlinarić, L. Uzelac, M. Kralj and B. Zorc, Chloroquine urea derivatives: synthesis and antitumor activity in vitro, Acta Pharm. 68 (2018) 471–483.10.2478/acph-2018-0039Search in Google Scholar

24. M. Beus, L. Persoons, D. Schols, L. Uzelac, M. Kralj, Z. Rajić and B. Zorc, Cytotoxicity studies of primaquine and chloroquine fumardiamides, 6th Croatian Congress on Pharmacy with International Participation, Book of Abstract, PO-16, Dubrovnik, April 4–6, 2019Search in Google Scholar

25. M. Beus, D. Fontinha, J. Held, Z. Rajić, M. Prudêncio and B. Zorc, Synthesis and antiplasmodial evaluation of novel mefloquine-based fumardiamides, Acta Pharm. 69 (2019) 233–248; https://doi.org/10.2478/acph-2019-001910.2478/acph-2019-001931259728Search in Google Scholar

26. G. Džimbeg, B. Zorc, M. Kralj, K. Ester, K. Pavelić, J. Balzarini, E. De Clercq and M. Mintas, The novel primaquine derivatives of N-alkyl, cycloalkyl or aryl urea: synthesis, cytostatic and antiviral activity evaluations, Eur. J. Med. Chem.43 (2008) 1180–1187; https://doi.org/10.1016/j.ejmech.2007.09.00110.1016/j.ejmech.2007.09.00117961851Search in Google Scholar

27. M. Šimunović, I. Perković, B. Zorc, K. Ester, M. Kralj, D. Hadjipavlou-Litina and E. Pontiki, Urea and carbamate derivatives of primaquine: synthesis, cytostatic and antioxidant activities, Bioorg. Med. Chem.17 (2009) 5605–5613; https://doi.org/10.1016/j.bmc.2009.06.03010.1016/j.bmc.2009.06.03019581098Search in Google Scholar

28. I. Perković, S. Tršinar, J. Žanetić, M. Kralj, I. Martin-Kleiner, J. Balzarini, D. Hadjipavlou-Litina and A. M. Katsori, Novel 1-acyl-4-substituted semicarbazide derivatives of primaquine – synthesis, cytostatic, antiviral and antioxidative studies, J. Enzyme Inhib. Med. Chem.28 (2013) 601–610; https://doi.org/10.3109/14756366.2012.66336610.3109/14756366.2012.66336622380782Search in Google Scholar

29. K. Pavić, I. Perković, M. Cindrić, M. Pranjić, I. Martin-Kleiner, M. Kralj, D. Schols, D. Hadjipavlou-Litina, A.-M. Katsori and B. Zorc, Novel semicarbazides and ureas of primaquine with bulky aryl or hydroxyalkyl substituents: Synthesis, cytostatic and antioxidative activity, Eur. J. Med. Chem.86 (2014) 502–514; https://doi.org/10.1016/j.ejmech.2014.09.01310.1016/j.ejmech.2014.09.01325203780Search in Google Scholar

30. I. Perković, M. Antunović, I. Marijanović, K. Pavić, K. Ester, M. Kralj, J. Vlainić, I. Kosalec, D. Schols, D. Hadjipavlou-Litina, E. Pontiki and B. Zorc, Novel urea and bis-urea primaquine derivatives with hydroxyphenyl and halogenphenyl substituents: synthesis and biological evaluation, Eur. J. Med. Chem.124 (2016) 622–636; https://doi.org/10.1016/j.ejmech.2016.08.02110.1016/j.ejmech.2016.08.02127614409Search in Google Scholar

31. K. Pavić, I. Perković, P. Gilja, F. Kozlina, K. Ester, M. Kralj, D. Schols, D. Hadjipavlou-Litina, E. Pontiki and B. Zorc, Design, synthesis and biological evaluation of novel primaquine-cinnamic acid conjugates of amide and acylsemicarbazide type, Molecules21 (2016) 1629–1653; https://doi.org/10.3390/molecules2112162910.3390/molecules21121629627368727916811Search in Google Scholar

32. K. Pavić, I. Perković, Š. Pospíšilová, M. Machado, D. Fontinha, M. Prudêncio, J. Jampilek, A. Coffey, L. Endersen, H. Rimac and B. Zorc, Primaquine hybrids as promising antimycobacterial and antimalarial agents, Eur. J. Med. Chem.143 (2018) 769–779; https://doi.org/10.1016/j.ejmech.2017.11.08310.1016/j.ejmech.2017.11.08329220797Search in Google Scholar

33. J. Vlainić, I. Kosalec, K. Pavić, D. Hadjipavlou-Litina, E. Pontiki and B. Zorc, Insights into biological activity of ureidoamides with primaquine and amino acid moieties, J. Enzyme Inhib. Med. Chem.33 (2018) 376–382; https://doi.org/10.1080/14756366.2017.142306710.1080/14756366.2017.1423067602103529363364Search in Google Scholar

34. J. Levatić, K. Pavić, I. Perković, L. Uzelac, K. Ester, M. Kralj, M. Kaiser, M. Rottmann, F. Supek and B. Zorc, Machine learning prioritizes synthesis of primaquine ureidoamides with high antimalarial activity and attenuated cytotoxicity, Eur. J. Med. Chem.146 (2018) 651–667; https://doi.org/10.1016/j.ejmech.2018.01.06210.1016/j.ejmech.2018.01.06229407988Search in Google Scholar

35. M. Beus, Z. Rajić, D. Maysinger, Z. Mlinarić, M. Antunović, I. Marijanović, D. Fontinha, M. Prudêncio, J. Held, S. Olgen and B. Zorc, SAHAquines, novel hybrids based on SAHA and primaquine motifs, as potential anticancer and antiplasmodial agents, ChemistryOpen7 (2018) 624–638; https://doi.org/10.1002/open.20180011710.1002/open.201800117610443330151334Search in Google Scholar

36. Z. Rajić, M. Beus, H. Michnova, J. Vlainić, L. Persoons, I. Kosalec, J. Jampilek, D. Schols, T. Keser and B. Zorc, Asymmetric primaquine and halogenaniline fumardiamides as novel biologically active Michael acceptors, Molecules23 (2018) 1724; https://doi.org/10.3390/molecules2307172410.3390/molecules23071724610058230011922Search in Google Scholar

37. I. Zhang, M. Beus, U. Stochaj, P. U. Le, B. Zorc, Z. Rajić, K. Petrecca and D. Maysinger, Inhibition of glioblastoma cell proliferation, invasion, and mechanism of action of a novel hydroxamic acid hybrid molecule, Cell Death Discov. 5 (2019) 41; https://doi.org/10.1038/s41420-018-0103-010.1038/s41420-018-0103-0615828830302275Search in Google Scholar

38. K. Pavić, Z. Rajić, H. Michnová, J. Jampílek, I. Perković and B. Zorc, Second generation of primaquine ureas and bis-ureas as potential antimycobacterial agents, Mol. Diver. (2018); https://doi.org/10.1007/s11030-018-9899-z10.1007/s11030-018-9899-z30523579Search in Google Scholar

39. M. E. Flanagan, J. A. Abramite, D. P. Anderson, A. Aulabaugh, U. P. Dahal, A. M. Gilbert, C. Li, J. Montgomery, S. R. Oppenheimer, T. Ryder, B. P. Schuff, D. P. Uccello, G. S. Walker, Y. Wu, M. F. Brown, J. M. Chen, M. M. Hayward, M. C. Noe, R. S. Obach, L. Philippe, V. Shanmugasundaram, M. J. Shapiro, J. Starr, J. Stroh and Y. Che, Chemical and computational methods for the characterization of covalent reactive groups for the prospective design of irreversible inhibitors, J. Med. Chem.57 (2014) 10072–10079; https://doi.org/10.1021/jm501412a10.1021/jm501412a25375838Search in Google Scholar

40. I. Fernandes, N. Vale, V. de Freitas, R. Moreira, N. Mateus and P. Gomes, Anti-tumoral activity of imidazoquines, a new class of antimalarials derived from primaquine, Bioorg. Med. Chem. Lett.19 (2009) 6914–6917; https://doi.org/10.1016/j.bmcl.2009.10.08110.1016/j.bmcl.2009.10.08119896373Search in Google Scholar

41. T. Rossi, A. Coppi, E. Bruni, A. Ruberto, S. Santachiara and G. A. Baggio, Effects of anti-malarial drugs on MCF-7 and Vero cell replication, Anticancer Res. 27 (2007) 2555–2559.Search in Google Scholar

42. A. R. Martirosyan, R. Rahim-Bata, A. B. Freeman, C. D. Clarke, R. L. Howard and J. S. Strobl, Differentiation-inducing quinolines as experimental breast cancer agents in the MCF-7 human breast cancer cell model, Biochem. Pharmacol. 68 (2004) 1729–1738.10.1016/j.bcp.2004.05.00315450938Search in Google Scholar

eISSN:
1846-9558
Langue:
Anglais
Périodicité:
4 fois par an
Sujets de la revue:
Pharmacy, other