Accès libre

Causes of Early-Age Thermal Cracking of Concrete Foundation Slabs and their Reinforcement to Control the Cracking

À propos de cet article

Citez

ACI 207.2R-07 (2007)Report on Thermal and Volume Change Effects on Cracking of Mass Concrete. ACI Committee 207, 28 pp.Search in Google Scholar

ACI 224.2R-92 (ACI 2004)Cracking of Concrete Members in Direct Tension. ACI Committee 224, 12 pp.Search in Google Scholar

Bamforth, P.B. (2007)Early-age thermal crack control in concrete. CIRIA C660, London, 112 pp.Search in Google Scholar

Becker, A. (2009)Waterproof Concrete Tanks. Tiefbau 3, pp. 153–161Search in Google Scholar

Bobko, C.P. - Edwards, A.J., Seracino, R. and Zia, P. (2015)Thermal Cracking of Mass Concrete Bridge Footings in Coastal Environments. Journal of Performance of Constructed Facilities, Vol. 29, No. 6, pp. 1-1110.1061/(ASCE)CF.1943-5509.0000664Search in Google Scholar

British Standard (BS) 8007. (1987)Design of Concrete Structures for Retaining Aqueous Liquids. British Standards Institution, 32 pp.Search in Google Scholar

Čajka, R. - Maňásek, P. - Sekanina, D. (2006)Reduction of Volume Changes of Concrete – Effects on State of Stress of Foundation. Proceedings of the International RILEM Conference on Volume Changes in Hardening Concrete, Lyngby, Denmark, pp. 195-204Search in Google Scholar

Carino, N.J. - Clifton, J.R. (1995)Prediction of Cracking in Reinforced Concrete Structures. NISTIR Report No. 5634, 51 pp.10.6028/NIST.IR.5634Search in Google Scholar

Deutscher Ausschuss für Stahlbeton (DAfStb) (2003)Richtlinie Wasserunduchlässige Bauwerke aus Beton (WU-Richtlinie) (Guideline Watertight Concrete Structures (WCS-Guideline)). 18 pp. (in German)Search in Google Scholar

Empelmann, M. - Krakowski, W. (2015)Erweitertes Modell zur Berechnung der Rissbreite (Extended model to calculate the crack width). Beton- und Stahlbetonbau, Vol. 110, No. 7, pp. 458–467 (in German)10.1002/best.201400112Search in Google Scholar

EN 1992-1-1. (2004)Design of Concrete Structures - Part 1-1: General Rules and Rules for Buildings. 225 pp.Search in Google Scholar

EN 1992-3. (2006)Design of Concrete Structures - Part 3: Liquid Retaining and Containment Structures. 23 pp.Search in Google Scholar

Fernandes, F. et al. (2014)On the feasibility of using phase change materials (PCMs) to mitigate thermal cracking in cementitious materials. Cement & Concrete Composites, 51, pp. 14–2610.1016/j.cemconcomp.2014.03.003Search in Google Scholar

Forth, J.P. - Martin, A.J. (2014)Design of Liquid Retaining Concrete Structures. Whittles Publishing, 192 pp.Search in Google Scholar

Kovler, K. - Bentur, A. (2009)Cracking Sensitivity of Normal- and High-Strength Concretes. ACI Materials Journal, Vol. 106, No. 6, pp. 537-542Search in Google Scholar

Kozikowski, R.L. - Suprenant, B.A. (2015)Controlling Early-Age Cracking in Mass Concrete. Concrete International, Vol. 37, No. 3, pp. 59-62Search in Google Scholar

Maekawa, K., - Chaube, R. - Kishi, T. (1999)Modelling of Concrete Performance: Hydration Microstructure Formation and Mass Transport. Taylor & Francis, 312 pp.Search in Google Scholar

Mihashi, H. - de B. Leite, J.P. (2004)State-of-the-Art Report on Control of Cracking in Early Age Concrete. Journal of Advanced Concrete Technology, No. 2, Vol. 2, pp. 141–15410.3151/jact.2.141Open DOISearch in Google Scholar

Mineral Products Association - MPA (2015)Concrete Design Guide. No. 1: Guidance on the design of liquid-retaining structures. The Structural Engineer, Jan. 2015, pp. 44-48Search in Google Scholar

Model Code 2010. (2013)fib Model Code for Concrete Structures 2010. 434 pp.Search in Google Scholar

Neville, A.M. (2011). Properties of Concrete. 5th edition, Pearson Education Limited, 2865 pp.Search in Google Scholar

prEN 1992-1-1. (2017-04)Design of Concrete Structures - Part 1-1: General Rules and Rules for Buildings. 261 pp.Search in Google Scholar

RILEM TC 184-IFE. (2006)Industrial Floors’. State-of-the-art Report. Report No. 33, 141 pp.Search in Google Scholar

Sant, G.N. (2009)Fundamental investigations related to the mitigation of volume changes in cement-based materials at early ages. PhD Dissertation, Purdue University, 201 pp.Search in Google Scholar

Schlicke, D. - Tue, N.V. (2015)Minimum reinforcement for crack width control in restrained concrete members considering the deformation compatibility. Structural Concrete, No. 2, pp. 221-23210.1002/suco.201400058Search in Google Scholar

Shi, N. - Ouyang, J. - Zhang, R. - Huang, D. (2014)Experimental Study on Early-Age Crack of Mass Concrete under the Controlled Temperature History. Advances in Materials Science and Engineering, Hindawi Publishing Corporation, 10 pp.10.1155/2014/671795Search in Google Scholar

Šmejkal, J. - Procházka, J. (2015)Výpočet šířky trhlin – 2. část (Calculation of Crack Widths – 2nd part). BETON TKS, Vol. 17, No. 1, pp. 72-78 (in Czech)Search in Google Scholar

Sonnenschein, R. - Bilčík, J. - Gajdošová, K. (2016)Parameter Analysis of the Reinforcement for the Width and Spacing Control of the Early-Age Cracks in Concrete. Key Engineering Materials, Trans Tech Publication, Vol. 691, pp. 14–2710.4028/www.scientific.net/KEM.691.14Search in Google Scholar

Springeschmid, R. (1984)Die Ermittlung von Spannungen infolge von Schwinden und Hydratationswärme in Beton (Determining stresses due to the shrinkage and heat from hydration in concrete). Beton- und Stahlbetonbau, No. 10, pp. 263–269 (in German)10.1002/best.198400390Search in Google Scholar

Sule, M.S. (2003)Effect of Reinforcement on Early-Age Cracking in High Strength Concrete. Master’s Thesis, TU Delft, 154 pp.Search in Google Scholar

Sule, M. - van Breugel, K. (2004)The effect of reinforcement on early-age cracking due to autogenous shrinkage and thermal effects. Cement & Concrete Composites, Vol. 26, No. 5, pp. 581-58710.1016/S0958-9465(03)00078-7Open DOISearch in Google Scholar

eISSN:
1338-3973
ISSN:
1210-3896
Langue:
Anglais
Périodicité:
4 fois par an
Sujets de la revue:
Engineering, Introductions and Overviews, other