Accès libre

Locating Critical Circular and Unconstrained Failure Surface in Slope Stability Analysis with Tailored Genetic Algorithm

À propos de cet article

Citez

[1] Bengtsson M.G., 1993, Genetic algorithms, URL http://library.wolfram.com/infocenter/MathSource/569/Search in Google Scholar

[2] Cheng Y., Location of critical failure surface and some further studies on slope stability analysis, Computers and Geotechnics, 2003, 30(3), 255–267.10.1016/S0266-352X(03)00012-0Open DOISearch in Google Scholar

[3] Cheng Y., Li L., Chun Chi S., Wei W., Particle swarm optimization algorithm for the location of the critical noncircular failure surface in two-dimensional slope stability analysis, Computers and Geotechnics, 2007, 34(2), 92–103.10.1016/j.compgeo.2006.10.012Open DOISearch in Google Scholar

[4] Das S.K., Slope stability analysis using genetic algorithm, Electron. J. Geotech. Eng., 2005, 10, 429–439.Search in Google Scholar

[5] Gao W., Forecasting of landslide disasters based on bionics algorithm. Part 1: Critical slip surface searching, Computers and Geotechnics, 2014, 61, 370–377.10.1016/j.compgeo.2014.06.007Search in Google Scholar

[6] Garg A., Garg A., Tai K., Barontini S., Stokes A., A computational intelligence-based genetic programming approach for the simulation of soil water retention curves, Transport in Porous Media, 2014, 103(3), 497–513.10.1007/s11242-014-0313-8Search in Google Scholar

[7] Goh A.T., Genetic algorithm search for critical slip surface in multiple-wedge stability analysis, Canadian Geotechnical Journal, 1999, 36(2), 382–391.10.1139/t98-110Open DOISearch in Google Scholar

[8] Goldberg D.E., Genetic Algorithms in Search, Optimization and Machine Learning, 1st Ed., Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1989.Search in Google Scholar

[9] Li Y.-C., Chen Y.-M., Zhan T.L., Ling D.-S., Cleall P.J., An efficient approach for locating the critical slip surface in slope stability analyses using a real-coded genetic algorithm, Canadian Geotechnical Journal, 2010, 47(7), 806–820.10.1139/T09-124Open DOISearch in Google Scholar

[10] Madej J., Metody sprawdzania stateczności zboczy, Wydawnictwo Komunikacji Łączności, 1981.Search in Google Scholar

[11] Manouchehrian A., Gholamnejad J., Sharifzadeh M., Development of a model for analysis of slope stability for circular mode failure using genetic algorithm, Environmental Earth Sciences, 2014, 71(3), 1267–1277.10.1007/s12665-013-2531-8Search in Google Scholar

[12] Matthews C., Farook Z., Helm P., Slope stability anlysis – limit equilibrium or finite element method?, Ground Engineering, 2014, 22–28.Search in Google Scholar

[13] McCombie P., Wilkinson P., The use of the simple genetic algorithm in finding the critical factor of safety in slope stability analysis, Computers and Geotechnics, 2002, 29(8), 699–714.10.1016/S0266-352X(02)00027-7Search in Google Scholar

[14] Osiński P., Rickson R.J., Hann M.J., Koda E., Assessment of slope stability influenced by vegetation cover and additional loads applied, Annals of Warsaw University of Life Sciences, Land Reclamation, 2014, 46(2), 81–91.10.2478/sggw-2014-0007Search in Google Scholar

[15] Pasik T., Liniowa analiza numeryczna zachowania się gruntu pod fundamentem bezpośrednim przy wykorzystaniu czterowęzłowego elementu skończonego z wygładzonym polem naprężeń, Acta Sci. Pol. Architectura, 2016, 15(1), 15–26.Search in Google Scholar

[16] Pasik T., Van der Meij R., 2016. Locating critical circular and unconstrained failure surface in slope stability analysis with tailored genetic algorithm – mathematica code.10.1515/sgem-2017-0039Search in Google Scholar

[17] Sarma S.K., Tan D., Determination of critical slip surface in slope analysis, Gotechnique, 2006, 56(8), 539–550.10.1680/geot.2006.56.8.539Search in Google Scholar

[18] Sas W., Głuchowski A., Bursa B., Szymański A., Energy-based analysis of permanent strain behaviour of cohesive soil under cyclic loading, Acta Geophysica, 2017, 65(2), 331–344.10.1007/s11600-017-0028-7Open DOISearch in Google Scholar

[19] Sengupta A., Upadhyay A., Locating the critical failure surface in a slope stability analysis by genetic algorithm, Applied Soft Computing, 2009, 9(1), 387–392.10.1016/j.asoc.2008.04.015Open DOISearch in Google Scholar

[20] Srokosz P., Slope stability analysis by variational method with genetic algorithm application, Part 4: Parallel genetic algorithms, Archives of Civil Engineering, 2009, 55(2), 229–256.Search in Google Scholar

[21] Toll D., Asquith J., Fraser A., Hassan A., Liu G., Lourenco S., Mendes J., Noguchi T., Osiński P., Stirling R., Tensiometer techniques for determining soil water retention curves, Asia-Pacific Conference on Unsaturated Soil, At Guilin, China, 2015.10.1201/b19248-4Search in Google Scholar

[22] Van M.A., Koelewijn A.R., Barends F.B.J., Uplift phenomenon: Model, validation, and design, International Journal of Geomechanics, 2015, 5(2), 98–106.10.1061/(ASCE)1532-3641(2005)5:2(98)Search in Google Scholar

[23] Van der Meij R., Sellmeijer J.B., A genetic algorithm for solving slope stability problems: From bishop to a free slip plane, [in:] T. Benz, S. Nordal (Eds.), Proceedings of NUMGE 2010. Taylor & Francis Group, 2010, 345–350Search in Google Scholar

[24] Wellin P., Programming with Mathematica: An Introduction, Cambridge University Press, Cambridge Books Online, 2013.Search in Google Scholar

[25] Zhu J.-F., Chen C.-F., Search for circular and noncircular critical slip surfaces in slope stability analysis by hybrid genetic algorithm, Journal of Central South University, 2014, 21(1), 387–397.10.1007/s11771-014-1952-1Search in Google Scholar

[26] Zolfaghari A.R., Heath A.C., McCombie P.F., Simple genetic algorithm search for critical non-circular failure surface in slope stability analysis, Computers and Geotechnics, 2005, 32(3), 139–152.10.1016/j.compgeo.2005.02.001Open DOISearch in Google Scholar

eISSN:
2083-831X
ISSN:
0137-6365
Langue:
Anglais
Périodicité:
4 fois par an
Sujets de la revue:
Geosciences, other, Materials Sciences, Composites, Porous Materials, Physics, Mechanics and Fluid Dynamics