Accès libre

Genetic Variation Amongst and Within The Native Provenances of Pinus radiata D. Don in South-eastern Australia. 2.Wood Density and Stiffness to Age 26 Years

À propos de cet article

Citez

ALBERT, D. J., T. A. CLARK, R. L. DICKSON and J. C. F. WALKER (2002): Using acoustics to sort radiata pine pulp logs according to fibre characteristics and paper properties. International Forestry Review 4: 12-19.Search in Google Scholar

BAMBER, R. K. and J. BURLEY (1983): The Wood Properties of Radiata Pine. Commonwealth Agricultural Bureaux, Slough, England. 84pp. Search in Google Scholar

BURDON, R. D. (1992): Genetic survey of Pinus radiata. 9. General discussion and implications for genetic management. New Zealand Journal of Forestry Science 22: 274-98. Search in Google Scholar

BURDON, R. D., R. A. J. BRITTON and G. B. WALFORD (2001): Wood stiffness and bending strength in relation to density in four native provenances of Pinus radiata. New Zealand Journal of Forestry Science 31: 130-146. Search in Google Scholar

BURDON, R. D. and C. A. LOW (1992): Genetic survey of Pinus radiata. 6. Wood properties: variation, heritabilities, and interrelationships with other traits. New Zealand Journal of Forestry Science 22: 228-245.Search in Google Scholar

BURDON, R. D., A. FIRTH, C. B. LOW and M. A. MILLER (1997): Native provenances of Pinus radiata in New Zealand: performance and potential. New Zealand Forestry 41(4): 32-36.Search in Google Scholar

BURDON, R. D., A. FIRTH, C. B. LOW and M. A. MILLER (1998): Multi-site provenance trials of Pinus radiata in New Zealand. Forest Genetic Resources 26: 3-8.Search in Google Scholar

BURDON, R. D., R. P. KIBBLEWHITE, J. C. F. WALKER, R. A. MEGRAW, R. EVANS and D. J. COWN (2004): Juvenile versus mature wood: A new concept, orthogonal to corewood versus outerwood, with special reference to Pinus radiata and P. taeda. Forest Science 50(4): 399-415.Search in Google Scholar

COWN, D. J. (1980): Radiata Pine: wood age and wood property concepts. New Zealand Journal of Forestry Science 10: 504-7.Search in Google Scholar

COWN, D. J. and R. P. KIBBLEWHITE (1980): Effects of wood quality variation in New Zealand radiata pine on kraft paper properties. New Zealand Journal of Forestry Science 10: 521-532.Search in Google Scholar

COWN, D. J. and D. L. MCCONCHIE (1980): Wood property variations in an old-crop stand of radiata pine. New Zealand Journal of Forestry Science 10: 508-520. Search in Google Scholar

COWN, D. J., D. L. MCCONCHIE and G. D. YOUNG (1991): Radiata Pine Wood Properties Survey. FRI Bulletin, No. 50. Rotorua. NZ, 50 p. Search in Google Scholar

DICKSON, R. L., B. JOE, P. HARRIS, S. HOLTORF and C. WILKINSON (2004): Acoustic segregation of Australian grown Pinus radiata logs for structural board production. Australian Forestry 67: 261-266.10.1080/00049158.2004.10674944Search in Google Scholar

DUNGEY, H. S., A. C. MATHESON, D. KAIN and R. EVANS (2006): Genetics of wood stiffness and its component traits in Pinus radiata. Canadian Journal of Forest Research 36: 1165-1178.10.1139/x06-014Open DOISearch in Google Scholar

ELDRIDGE, K. G. (1978): Refreshing the genetic resources of radiata pine plantations. CSIRO Division of Forest Research, Genetics Section Report, No. 7, 120 pp. Search in Google Scholar

GAPARE, W. J., H. X. WU and A. ABARQUEZ (2006): Genetic control of the time of transition from juvenile to mature wood in Pinus radiata D. Don. Annals of Forest Science 63: 871-878.10.1051/forest:2006070Open DOISearch in Google Scholar

GILMOUR, A. R., B. J. GOGEL, B. R. CULLIS, S. J. WELHAM and R. THOMPSON (2002): ASReml user guide release 1. VSN, Hemel Hempstead, UK. JOHNSON, I. G., P. K. ADES and K. G. ELDRIDGE (1997): Growth of natural Californian provenances of Pinus radiata in New South Wales, Australia. New Zealand Journal of Forestry Science 27: 23-38. Search in Google Scholar

KARHU, A., C. VOGL, G. F. MORAN, J. C. BELL and O. SAVOLAINEN (2006): Analysis of microsatellite variation in Pinus radiata reveals effects of genetic drift but no recent bottlenecks. Journal of Evolutionary Biology 19: 167-175. 10.1111/j.1420-9101.2005.00982.x16405588Open DOISearch in Google Scholar

KUMAR, S. and J. LEE (2002): Age-age correlations and early selection for end-of-rotation wood density in radiata pine. Forest Genetics 9(4): 323-330. Search in Google Scholar

LI, L. and H. X. WU (2005): Efficiency of early selection for rotation-aged growth and wood density traits in Pinus radiata. Canadian Journal of Forest Research 35(8): 2019-2029. 10.1139/x05-134Search in Google Scholar

LIBBY, W. J. (1997): Native origins of domesticated radiata pine. In: BURDON, R. D. and MOORE, J. M. IUFRO ‘97 Genetics of Radiata Pine. FRI Bulletin No. 203. Rotorua New Zealand. pp. 9-25. Search in Google Scholar

MORAN, G. F. and J. C. BELL (1987): The origin and genetic diversity of Pinus radiata in Australia. Theoretical and Applied Genetics 43: 616-622. 10.1007/BF0028920324241122Open DOISearch in Google Scholar

MORAN, G. F., J. C. BELL and K. G. ELDRIDGE (1988): The genetic structure and the conservation of the five natural populations of Pinus radiata. Canadian Journal of Forest Research 18: 506-514.10.1139/x88-074Open DOISearch in Google Scholar

RAYMOND, C. A. (2006): Density assessment of radiata pine: sampling strategy revisited. Holzforschung 60: 580-582. 10.1515/HF.2006.096Search in Google Scholar

RAYMOND, C. A., B. JOE, R. EVANS and R. L. DICKSON (2007): Relationship between timber grade, static and dynamic modulus of elasticity and SilviScan properties for Pinus radiata in New South Wales. New Zealand Journal of Forestry Science 37(2): 186-196.Search in Google Scholar

RAYMOND, C. A. and M. HENSON (2009): Genetic variation within the native provenances of Pinus radiata D. Don. I. Growth and form to age 26 years. Silvae Genetica (submitted, in review) 10.1515/sg-2009-0031Search in Google Scholar

ROGERS, D. L. (2002): In situ Genetic Conservation of Monterey pine (Pinus radiata D. Don). Information and Recommendations. University of California, Division of Agriculture and Natural Resources, Genetic Conservation Program Report No. 26. Davis, California, USA. Search in Google Scholar

ROPER, J., R. BALL, B. DAVY, G. DOWNES, D. FIFE, D. GAUNT, D. GRITTON, J. ILIC, A. KOEHLER, R. MCKINLEY, A. MORROW, R. NORTHWAY, B. PENELLUM, J. ROMBOUTS and S. PONGRACIC (2004): Resource evaluation for Future Profit: Part B - Linking grade outturn to wood properties. Forest and Wood Products Research and Development Corporation report Project No. PN03.3906 Resource characterization and Improvement Program. Available at: www.fwprdc.org.au pp.74pp. Search in Google Scholar

SMITH, D. M. (1954): Maximum moisture content method for determining specific gravity of small wood samples. U.S. Forest Service, U.S. Department of Agriculture Report, No. 2014. 8pp. Search in Google Scholar

WANG, X., R. J. ROSS, J. R. ERICKSON and J. B. LIGON (2000): Nondestructive evaluation of trees. Experimental Techniques 24(6): 27-29. 10.1111/j.1747-1567.2000.tb01345.xSearch in Google Scholar

WILCOX, M. D. (1983): Inbreeding depression and genetic variances estimated from self- and cross-pollinated families of Pinus radiata. Silvae Genetica 32: 89-96. Search in Google Scholar

WU, H. X., A. C. MATHESON and A. ABARQUEZ (2002): Inbreeding in Pinus radiata. IV. The effect of inbreeding on wood density. Annals Forest Science 59: 557-562. 10.1051/forest:2002041Search in Google Scholar

WU, H. X., M. IVKOVIC, W. J. GAPARE, A. C. MATHESON, B. S. BALTUNIS, M. B. POWELL and T. A. MCRAE (2008): Breeding for wood quality and profit in Pinus radiata: A review of genetic parameter estimates and implications for breeding and deployment. New Zealand Journal of Forestry Science 38(1): 57-87. Search in Google Scholar

ZAMUDIO, F., R. BAETTYG, A. VERGARA, F. GUERRA and P. ROZENBERG (2002): Genetic trends in wood density and radial growth with cambial age in a radiata pine progeny test. Annals of Forest Science 59: 541-549.10.1051/forest:2002039Search in Google Scholar

eISSN:
2509-8934
Langue:
Anglais
Périodicité:
Volume Open
Sujets de la revue:
Life Sciences, Molecular Biology, Genetics, Biotechnology, Plant Science