À propos de cet article

Citez

1. Donmez, M.F., Esitken, A., Yildiz, H. & Ercisli, S. (2011). Biocontrol of Botrytis cinerea on strawberry fruit by plant growth promoting bacteria. J. Anim. Plant Sci. 21(4), 758-763.Search in Google Scholar

2. Barker, A.V. (2010). Science and technology of organic farming. Boca Raton, USA: CRC Press.Search in Google Scholar

3. Vilanova, L., Viñas, I., Torres, R., Usall, J., Buron-Moles, G. & Teixidó, N. (2014). Acidifi cation of apple and orange hosts by Penicillium digitatum and Penicillium expansum. Int. J. Food Microbiol. 178, 39-49. DOI: 10.1016/j.ijfoodmicro.2014.02.022.10.1016/j.ijfoodmicro.2014.02.02224667317Search in Google Scholar

4. da Rocha Neto, A.C., Luiz, C., Maraschin, M. & Di Piero, R.M. (2016). Effi cacy of salicylic acid to reduce Penicillium expansum inoculum and preserve apple fruits. Int. J. Food Microbiol. 221, 54-60. DOI: 10.1016/j.ijfoodmicro.2016.01.007.10.1016/j.ijfoodmicro.2016.01.00726808096Search in Google Scholar

5. da Rocha, M.E.B., Freire, F.C.O., Maia, F.E.F., Guedes, M.I.F. & Rondina, D. (2014). Mycotoxins and their effects on human and animal health. Food Control 36(1), 159-165. DOI: 10.1016/j.foodcont.2013.08.021.10.1016/j.foodcont.2013.08.021Search in Google Scholar

6. da Rocha Neto, A.C., Maraschin, M. & Di Piero, R.M. (2015). Antifungal activity of salicylic acid against Penicillium expansum and its possible mechanisms of action. Int. J. Food Microbiol. 215, 64-70. DOI: 10.1016/j.ijfoodmicro.2015.08.018.10.1016/j.ijfoodmicro.2015.08.01826340673Search in Google Scholar

7. Feliziani, E. & Romanazzi, G. (2013, October). Preharvest application of synthetic fungicides and alternative treatments to control postharvest decay of fruit. Stewart Postharvest Rev. 9(3), 1-6. Retrieved July 12, 2016, from http://www.stewartpostharvest.com/articles.shtml.10.2212/spr.2013.3.4Search in Google Scholar

8. Bajwa, U. & Sandhu, K.S. (2014). Effect of handling and processing on pesticide residues in food - a review. J. Food Sci. Technol. 51(2), 201-220. DOI: 10.1007/s13197-011-0499-5.10.1007/s13197-011-0499-5390764424493878Search in Google Scholar

9. Grimalt, S. & Dehouck, P. (2016). Review of analytical methods for the determination of pesticide residues in grapes. J. Chromatogr. A 1433, 1-23. DOI: 10.1016/j.chroma.2015.12.076.10.1016/j.chroma.2015.12.07626803907Search in Google Scholar

10. Uclés, A., Valverde, G.A., García, M.D.G., del Real, A.M.A. & Fernández-Alba, A.R. (2015). Benzimidazole and imidazole fungicide analysis in grape and wine samples using a competitive enzyme-linked immunosorbent assay. Anal. Methods 7(21), 9158-9165. DOI: 10.1039/c5ay01048a.10.1039/C5AY01048ASearch in Google Scholar

11. Wightwick, A., Walters, R., Allinson, G., Reichman, S. & Menzies, N. (2010). Environmental risks of fungicides used in horticultural production systems. In O. Carisse (Ed.), Fungicides (pp. 273-304). InTech. Retrieved July 12, 2016, from http://www.intechopen.com/books/fungicides. DOI: 10.5772/13032.10.5772/13032Search in Google Scholar

12. van den Bosch, F., Paveley, N., Shaw, M., Hobbelen, P. & Oliver, R. (2011). The dose rate debate: does the risk of fungicide resistance increase or decrease with dose? Plant Pathol. 60(4), 597-606. DOI: 10.1111/j.1365-3059.2011.02439.x.10.1111/j.1365-3059.2011.02439.xSearch in Google Scholar

13. Rainsford, K.D. (Ed.) (2004). Aspirine and related drugs. London, UK: CRC Press.10.1201/9780203646960Search in Google Scholar

14. Sahoo, J. & Paidesetty, S.K. (2015). Antimicrobial, analgesic, antioxidant and in silico study of synthesized salicylic acid congeners and their structural interpretation. Egyp. J. Bas. Appl. Sci. 2(4), 268-280. DOI: 10.1016/j.ejbas.2015.07.006.10.1016/j.ejbas.2015.07.006Search in Google Scholar

15. Djurendić, E., Dojčinović Vujašković, S., Sakač, M., Ajduković, J., Gaković, A., Kojić, V., Bogdanović, G., Klisurić, O. & Penov Gaši, K. (2011). Synthesis and biological evaluation of some new 2-oxazoline and salicylic acid derivatives. ARKIVOC 2011(2), 83-102. DOI: 10.3998/ark.5550190.0012.207.10.3998/ark.5550190.0012.207Search in Google Scholar

16. Vidhyasekaran, P. (2007). Fungal pathogenesis in plants and crops: Molecular biology and host defense mechanisms (2nd ed.). Boca Raton, USA: CRC Press.10.1201/9781420021035Search in Google Scholar

17. Wang, Y.Y., Li, B.Q., Qin, G.Z., Li, L. & Tiana, S.P. (2011). Defense response of tomato fruit at different maturity stages to salicylic acid and ethephon. Sci. Hortic. 129(2), 183-188. DOI: 10.1016/j.scienta.2011.03.021.10.1016/j.scienta.2011.03.021Search in Google Scholar

18. Zhang, H., Ma, L., Wang, L., Jiang, S., Dong, Y. & Zheng, X. (2008). Biocontrol of gray mold decay in peach fruit by integration of antagonistic yeast with salicylic acid and their effects on postharvest quality parameters. Biol. Control 47(1), 60-65. DOI: 10.1016/j.biocontrol.2008.06.012.10.1016/j.biocontrol.2008.06.012Search in Google Scholar

19. Mandal, S., Mallick, N. & Mitra, A. (2009). Salicylic acid-induced resistance to Fusarium oxysporum f. sp. lycopersici in tomato. Plant Physiol. Bioch. 47(7), 642-649. DOI: 10.1016/j. plaphy.2009.03.001.Search in Google Scholar

20. Yu, T. & Zheng, X.D. (2006). Salicylic acid enhances biocontrol effi cacy of the antagonist Cryptococcus laurentii in apple fruit. J. Plant Growth Regul. 25(2), 166-174. DOI: 10.1007/s00344-005-0077-z.10.1007/s00344-005-0077-zSearch in Google Scholar

21. Panahirad, S., Zaare-Nahandi, F., Safaralizadeh, R. & Alizadeh-Salteh, S. (2012). Postharvest control of Rhizopus stolonifer in peach (Prunus persica L. Batsch) fruits using salicylic acid. J. Food Safety 32(4), 502-507. DOI: 10.1111/jfs.12013.10.1111/jfs.12013Search in Google Scholar

22. Qin, X., Xiao, H., Xue, C., Yu, Z., Yang, R., Cai, Z. & Si, L. (2015). Biocontrol of gray mold in grapes with the yeast Hanseniaspora uvarum alone and in combination with salicylic acid or sodium bicarbonate. Postharvest Biol. Tec. 100, 160-167. DOI: 10.1016/j.postharvbio.2014.09.010.10.1016/j.postharvbio.2014.09.010Search in Google Scholar

23. Amborabé, B., Fleurat-Lessard, P., Chollet, J. & Roblin, G. (2002). Antifungal effects of salicylic acid and other benzoic acid derivatives towards Eutypa lata: structure-activity relationship. Plant Physiol. Bioch. 40(12), 1051-1060. DOI: 10.1016/ S0981-9428(02)01470-5.10.1016/S0981-9428(02)01470-5Search in Google Scholar

24. Prithiviraj, B., Singh, U.P., Manickam, M. & Ray, A.B. (1997). Antifungal activity of anacardic acid, a naturally occurring derivative of salicylic acid. Can. J. Bot. 75(1), 207-211. DOI: 10.1139/b97-021.10.1139/b97-021Search in Google Scholar

25. Reinheckel, H. (1960). Über halogen- und stickstoffhaltige Derivate aliphatischer Carbonsäuren, I. Die indirekte α-Bromierung von Fettsäureestern. Chem. Ber. 93(10), 2222-2229. DOI: 10.1002/cber.19600931007. 10.1002/cber.19600931007Search in Google Scholar

26. Kwiecień, H. (1996). Synthesis and properties of new 2-alkyl-1,4-benzoxazepine derivatives. Part I. Synthesis and cyclization of 2-phenoxyalkanoic acid derivatives. Pol. J. Chem. 70, 733-741.10.1002/chin.199638172Search in Google Scholar

27. Catel, Y., Aladedunye, F. & Przybylski, R. (2010). Synthesis, radical scavenging activity, protection during storage, and frying by novel antioxidants. J. Agric. Food Chem. 58(20), 11081-11089. DOI: 10.1021/jf102287h.10.1021/jf102287h20923149Search in Google Scholar

28. Haddleton, D.M., Sahota, H.S., Taylor, P.C. & Yeate, S.G. (1996). Synthesis of polyester dendrimers. J. Chem. Soc. Perkin Trans. 1 1996(7), 649-656. DOI: 10.1039/P19960000649.10.1039/p19960000649Search in Google Scholar

29. Torlopov, M.A., Udoratina, E.V. & Kuchin, A.V. (2013). Synthesis of inulin esters of phenylcarboxylic acids. Russ. J. Org. Chem. 49(5), 702−706. DOI: 10.1134/S1070428013050114.10.1134/S1070428013050114Search in Google Scholar

30. Spivey, A.C. & Leese, D. (2002). Synthetic methods. Part (III) Protecting groups. Annu. Rep. Prog. Chem., Sect. B 98, 41-60. DOI: 10.1039/b111463h.10.1039/B111463HSearch in Google Scholar

31. Zakrzewski, J. & Krawczyk, M. (2006). Reactions of nitroxides with sulfur-containing compounds, Part IV: Synthesis of novel nitroxide (thio)ureas. Heteroatom Chem. 17(5), 393-401. DOI: 10.1002/hc.20228.10.1002/hc.20228Search in Google Scholar

eISSN:
1899-4741
Langue:
Anglais
Périodicité:
4 fois par an
Sujets de la revue:
Industrial Chemistry, Biotechnology, Chemical Engineering, Process Engineering