À propos de cet article

Citez

[1] Feher, K. (1995). Wireless Digital Communications: Modulation and Spread Spectrum Applications. Prentice-Hall.Search in Google Scholar

[2] Proakis, J., Salehi, M. (2007). Digital Communications. McGraw-Hill.Search in Google Scholar

[3] Sklar, B. (2001). Digital Communications: Fundamentals and Applications. Prentice-Hall.Search in Google Scholar

[4] Seguin, F., Lahuec, C., Lebert, J., Arzel, M., Jezequel, M. (2004). Analogue 16-QAM demodulator. Electronics Letters, 40 (18), 1138-1140.10.1049/el:20046146Search in Google Scholar

[5] Sharma, R.H., Bhatt, K.R. (2015). A review on implementation of QAM on FPGA. International Journal of Innovative Research in Computer and Communication Engineering, 3 (3), 1684-1688.Search in Google Scholar

[6] Naveen, K.B., Sree Rangaraju, M.N. (2016). Energy efficient QAM modulation/demodulation architecture using reversible logic gates. International Journal of Scientific & Engineering Research, 7 (8), 759-763.Search in Google Scholar

[7] Ayat, M., Mirzakuchaki, S., Beheshti-Shirazi, A., (2016). Design and implementation of high throughput, robust, parallel M-QAM demodulator in digital communication receivers. IEEE Transactions on Circuits and Systems I: Regular Papers, 63 (8), 1295-1304.10.1109/TCSI.2016.2589078Search in Google Scholar

[8] Yanxin, L., Aiqun, H. (2007). An adaptive demodulation method for QAM signals. In IEEE 2007 International Symposium on Microwave, Antenna, Propagation, and EMC Technologies for Wireless Communications, 16-17 August 2007, Hangzhou, China. IEEE, 1064-1067.10.1109/MAPE.2007.4393452Search in Google Scholar

[9] Aggarwal, P., Prasad, N., Wang, X. (2007). An enhanced deterministic sequential Monte Carlo method for near-optimal MIMO demodulation with QAM constellations. IEEE Transactions on Signal Processing, 55 (6), 2395-2406.10.1109/TSP.2007.893201Search in Google Scholar

[10] Lane, F., Scarpa, C., Koslov, J., Vinekarand, S., Juan, Y. (1996). A single chip demodulator for 64/256 QAM. IEEE Transactions on Consumer Electronics, 42 (4), 1003-1010.10.1109/30.555808Search in Google Scholar

[11] Glushkov, A.N., Litvinenko, V.P., Matveev, B.V., Chernoyarov, O.V., Salnikova, A.V. (2015). Basic algorithm for the coherent digital processing of the radio signals. In 2015 International Conference on Space Science & Communication, 10-12 August 2015, Langkawi, Malaysia. IEEE, 389-392.10.1109/IconSpace.2015.7283834Search in Google Scholar

[12] Glushkov, A.N., Litvinenko, V.P., Matveev, B.V., Chernoyarov, O.V. (2015). Basic algorithm for the noncoherent digital processing of the narrowband radio signals. Applied Mathematical Sciences, 9 (95), 4727-4735.10.12988/ams.2015.54351Search in Google Scholar

[13] Litvinenko, V.P., Litvinenko, Yu.V., Matveev, B.V., Chernoyarov, O.V., Makarov, A.A. (2017). Digital algorithm for phase locking of demodulators of the binary phase-shift keyed signals. Journal of Engineering Technology, 6 (2), 278-289.Search in Google Scholar

[14] Fedorov, I.B. (ed.) (2011). Information Technologies in Radio Engineering Systems. Moscow, Russia: Bauman Moscow State Technical University. (in Russian)Search in Google Scholar

[15] Xilinx Inc. (2011). Xilinx DS160 Spartan-6 family overview. Product Specification. https://www.xilinx.com/support/documentation/data_sheets/ds160.pdf.Search in Google Scholar

eISSN:
1335-8871
Langue:
Anglais
Périodicité:
6 fois par an
Sujets de la revue:
Engineering, Electrical Engineering, Control Engineering, Metrology and Testing