Accès libre

Characterization of the Embryogenic Tissue of the Norway Spruce Including a Transition Layer between the Tissue and the Culture Medium by Magnetic Resonance Imaging

À propos de cet article

Citez

[1] Mac Fall, J.S., Van As, H. (1996). Magnetic resonance imaging of plants. In Nuclear Magnetic Resonance in Plant Biology. The American Society of Plant Physiologists, 33-76.Search in Google Scholar

[2] Scheenen, T., Vergeldt, F., Heemskerk, A., Van As, H. (2007). Intact plant magnetic resonance imaging to study dynamics in long-distance sap flow and flow-conducting surface area. Plant Physiology, 144, 1157-1165.10.1104/pp.106.089250191415817449653Search in Google Scholar

[3] Ionenko, I., Anisimov, A., Dautova, N. (2010). Effect of temperature on water transport through aquaporins. Biologia Plantarum, 54, 488-494.10.1007/s10535-010-0086-zSearch in Google Scholar

[4] Pu, Y., Chen, F., Ziebell, A., Davison, B., Ragauskas, A. (2009). NMR characterization of C3H and HCT down-regulated alfalfa lignin. BioEnergy Research, 2, 198-208.10.1007/s12155-009-9056-8Search in Google Scholar

[5] Zulak, K., Weljie, A., Vogel, H., Facchini, P. (2008). Quantitative 1H NMR metabolomics reveals extensive metabolic reprogramming of primary and secondary metabolism in elicitor-treated opium poppy cell cultures. BMC Plant Biology, 8, 5.10.1186/1471-2229-8-5225795218211706Search in Google Scholar

[6] Lambert, J., Lampen, P., von Bohlen, A., Hergenroder, R. (2006). Two- and three-dimensional mapping of the iron distribution in the apoplastic fluid of plant leaf tissue by means of magnetic resonance imaging. Analytical and Bioanalytical Chemistry, 384, 231-236.10.1007/s00216-005-0119-116240112Search in Google Scholar

[7] Glidewell, S., Möller, M., Duncan, G., Mill, R., Masson, D., Williamson, B. (2002). NMR imaging as a tool for noninvasive taxonomy: Comparison of female cones of two Podocarpaceae. New Phytologist, 154, 197-207.10.1046/j.1469-8137.2002.00356.xSearch in Google Scholar

[8] Šupálková, V., Petřek, J., Baloun, J., Adam, V., Bartušek, K., Trnková, L., Beklová, M., Diopan, V., Havel, L., Kizek, R. (2007). Multi-instrumental investigation of affecting of early somatic embryos of spruce by cadmium (II) and lead (II) ions. Sensors, 7, 743-759.10.3390/s7050743Search in Google Scholar

[9] Šebánek, J., Sladký, Z., Procházka, S. (1991). Experimental Morphogenesis and Integration of Plants: Terofal. 1st Edition. Prague, Czech Republic: Academia; Elsevier.Search in Google Scholar

[10] Dostál, R. (1967). On Integration in Plants. 1st Edition. Harvard University Press.Search in Google Scholar

[11] Hřib, J., Vooková, B., Neděla, V. (2015). Imaging of native early embryogenic tissue of Scots pine (Pinus sylvestris L.) by ESEM. Open Life Sciences, 10, 285-290.10.1515/biol-2015-0028Search in Google Scholar

[12] Šamaj, J., Salaj, T., Matúšová, R., Salaj, J., Takáč, T., Šamajová, O., Volkmann, D. (2008). Arabinogalactan-protein epitope Gal4 is differentially regulated and localized in cell lines of hybrid fir (Abies alba x Abies cephalonica) with different embryogenic and regeneration potential. Plant Cell Reports, 27, 221-229.10.1007/s00299-007-0429-117943290Search in Google Scholar

[13] Neděla, V., Hřib, J., Vooková, B. (2012). Imaging of early conifer embryogenic tissues with the environmental scanning electron microscope. Biologia Plantarum, 56, 595-598.10.1007/s10535-012-0062-xSearch in Google Scholar

[14] Neděla, V., Hřib, J., Havel, L., Runštuk, J. (2013) Early state of spruce somatic embryos in native state observed using the ESEM and Cryo-SEM. Microscopy and Microanalysis, 19 (suppl. 2), 20-21.10.1017/S1431927613002092Search in Google Scholar

[15] Neděla, V., Tihlaříková, E., Hřib, J. (2015). The low-temperature method for study of coniferous tissues in the environmental scanning electron microscope. Microscopy Research Techniques, 78 (1), 13-21.10.1002/jemt.22439Search in Google Scholar

[16] Egertsdotter, U., von Arnold, S. (1995). Importance of arabinogalactan proteins for the development of somatic embryos of Norway spruce (Picea abies). Physiologia Plantarum, 93, 334-345.10.1111/j.1399-3054.1995.tb02237.xSearch in Google Scholar

[17] Clarke, A., Anderson, R.L., Stone, B. (1979). Form and function of arabinogalactans and arabinogalactan-proteins. Phytochemistry, 18, 521-540.10.1016/S0031-9422(00)84255-7Search in Google Scholar

[18] Karácsonyi, Š., Pätoprstý, V., Kubačková, M. (1998). Structural study on arabinogalactan-proteins from Picea abies L. Karst. Carbohydrate Research, 307, 271-279.10.1016/S0008-6215(98)00052-4Search in Google Scholar

[19] Seifert, G., Roberts, K. (2007). The biology of arabinogalactan proteins. Annual Review of Plant Biology, 58, 137-161.10.1146/annurev.arplant.58.032806.103801Search in Google Scholar

[20] Mikulka, J., Hutova, E., Korinek, R., Marcon, P., Dokoupil, Z., Gescheidtova, E., Havel, L., Bartusek, K. (2016). MRI-based visualization of the relaxation times of early somatic embryos. Measurement Science Review, 16, 54-61.10.1515/msr-2016-0008Search in Google Scholar

[21] von Arnold, S. (1987). Improved efficiency of somatic embryogenesis in mature embryos of Picea abies (L.) Karst. Journal of Plant Physiology, 128, 233-244.10.1016/S0176-1617(87)80237-7Search in Google Scholar

[22] Havel, L., Durzan, D. (1996). Apoptosis during diploid parthenogenesis and early somatic embryogenesis of Norway spruce. International Journal of Plant Sciences, 157, 8-16.10.1086/297315Search in Google Scholar

[23] Vlašínová, H., Mikulecký, M., Havel, L. (2003). The mitotic activity of Norway spruce polyembryonic culture oscillates during the synodic lunar cycle. Biologia Plantarum, 47, 475-476.10.1023/B:BIOP.0000023900.49134.2dSearch in Google Scholar

[24] Bloch, F. (1946). Nuclear Induction. Physical Review, 70, 460-473.10.1103/PhysRev.70.460Search in Google Scholar

[25] Xiong, T., Zhang, L., Yi, Z. (2016). Double Gaussian mixture model for image segmentation with spatial relationship. Journal of Visual Communication and Image Representation, 34, 135-145.10.1016/j.jvcir.2015.10.018Search in Google Scholar

[26] Dubois, T., Dubois, J., Guedira, M., Diop, A., Vasseur, J. (1992). SEM characterization of an extracellular matrix around somatic proembryos in roots of Cichorium. Annals of Botany, 70, 119-124.10.1093/oxfordjournals.aob.a088447Search in Google Scholar

[27] Šamaj, J., Bobák, M., Blehová, A., Krištin, J, Auxtová-Šamajová, O. (1995). Developmental SEM observations of an extracellular matrix in embryogenic calli of Drosera rotundifolia and Zea mays. Protoplasma, 186, 45-49.10.1007/BF01276934Search in Google Scholar

[28] Baluška, F., Šamaj, J., Wojtaszek, P., Volkmann, D., Menzel, D. (2003). Cytoskeleton-plasma membrane-cell wall continuum in plants. Emerging links revisited. Plant Physiology, 133, 482-491.10.1104/pp.103.02725052387514555777Search in Google Scholar

[29] Dostál, R. (1959). O celistvosti rostliny (On Integration in Plants). Prague, Czech Republic: SZN. (in Czech)Search in Google Scholar

[30] Verdeil, J., Hocher, V., Huet, C., Grosdemange, F., Escoute, J., Ferrière, N., Nicole, M. (2001). Ultrastructural changes in coconut calli associated with the acquisition of embryogenic competence. Annals of Botany, 88, 9-18.10.1006/anbo.2001.1408Search in Google Scholar

[31] Šamaj, J., Baluška, F., Bobák, M., Volkmann, D. (1999). Extracellular matrix surface network of embryogenic units of friable maize callus contains arabinogalactan-proteins recognized by monoclonal antibody JIM 4. Plant Cell Reports, 18, 369-374.10.1007/s002990050588Search in Google Scholar

[32] Davies, J. (2001). Extracellular matrix. In Encyclopedia of Life Sciences. Nature Publishing Group.10.1038/npg.els.0001274Search in Google Scholar

eISSN:
1335-8871
Langue:
Anglais
Périodicité:
6 fois par an
Sujets de la revue:
Engineering, Electrical Engineering, Control Engineering, Metrology and Testing