À propos de cet article

Citez

[1] Schneider J., Matsuoka M., Takeuchi M., Zhang J., Horiuchi Y., Anpo M., Bahnemann D.W., Chem. Rev., 114 (2014), 9919.SchneiderJ.MatsuokaM.TakeuchiM.ZhangJ.HoriuchiY.AnpoM.BahnemannD.W.Chem. Rev1142014991910.1021/cr500189225234429Search in Google Scholar

[2] Yates H.M., Nolan M.G., Sheel D.W., Pemble M.E., J. Photochem. Photobiol. A, 179 (2006), 213.YatesH.M.NolanM.G.SheelD.W.PembleM.E.J. Photochem. PhotobiolA, 179200621310.1016/j.jphotochem.2005.08.018Search in Google Scholar

[3] Thompson T.L., Yates Jr. J.T., Chem. Rev., 106 (2006), 4428.ThompsonT.L.YatesJ.T.JrChem. Rev1062006442810.1021/cr050172k17031993Search in Google Scholar

[4] Hashimoto K., Irie H., Fujishima A, Jpn. J. Appl. Phys., 44 (2005), 8269.HashimotoK.IrieH.FujishimaAJpn. J. Appl. Phys442005826910.1143/JJAP.44.8269Search in Google Scholar

[5] Stepanov A.L., Rev. Adv. Mater. Sci., 30 (2012), 150.StepanovA.L.Rev. Adv. Mater. Sci302012150Search in Google Scholar

[6] Zaleska A., Recent Pat. Eng., 2 (2008), 157.ZaleskaA.Recent Pat. Eng2200815710.2174/187221208786306289Search in Google Scholar

[7] Matsumoto Y., Murakami M., Shono T., Hasegawa T., Fukumura T., Kawasaki M., Ahmet P., Chikyow T., Koshihara S., Koinuma H., Science, 291 (2001), 854.MatsumotoY.MurakamiM.ShonoT.HasegawaT.FukumuraT.KawasakiM.AhmetP.ChikyowT.KoshiharaS.KoinumaH.Science291200185410.1126/science.105618611228146Search in Google Scholar

[8] Dietl T., Ohno H., Matsukura F., Cibert J., Ferrand D., Science, 287 (2000), 1019.DietlT.OhnoH.MatsukuraF.CibertJ.FerrandD.Science2872000101910.1126/science.287.5455.101910669409Search in Google Scholar

[9] Sato K., Katayama-Yoshida H., Jpn. J. Appl. Phys., 39 (2000), L555.SatoK.Katayama-YoshidaH.Jpn. J. Appl. Phys392000L55510.1143/JJAP.39.L555Search in Google Scholar

[10] Coey J.M.D., Venkatesan M., Fitzgerald C.B., Nat. Mater., 4 (2005), 173.CoeyJ.M.D.VenkatesanM.FitzgeraldC.B.Nat. Mater4200517310.1038/nmat131015654343Search in Google Scholar

[11] Janisch R., Gopal P., Spaldin N.A., J. Phys.: Condens. Mater., 17 (2005), R657.JanischR.GopalP.SpaldinN.A.J. Phys.: Condens. Mater172005R65710.1088/0953-8984/17/27/R01Search in Google Scholar

[12] Li X.L., Qi S.F., Jiang F.X., Quan Z.Y., Xu X.H., Sci. China-Phys. Mech. Astron., 56 (2013), 111.LiX.L.QiS.F.JiangF.X.QuanZ.Y.XuX.H.Sci. China-Phys. Mech. Astron56201311110.1007/s11433-012-4966-4Search in Google Scholar

[13] Griffin Roberts K., Varela M., Rashkeev S., Pantelides S.T., Pennycook S.J., Krishnan K.M., Phys. Rev. B, 78 (2008), 014409.Griffin RobertsK.VarelaM.RashkeevS.PantelidesS.T.PennycookS.J.KrishnanK.M.Phys. Rev. B78200801440910.1103/PhysRevB.78.014409Search in Google Scholar

[14] Yamada Y., Fukumura T., Ueno K., Kawasaki M., Appl. Phys Lett., 99 (2011), 242502.YamadaY.FukumuraT.UenoK.KawasakiM.Appl. Phys Lett99201124250210.1063/1.3669505Search in Google Scholar

[15] Mohanty P., Mishra N.C., Choudhary R.J., Banerjee A., Shripathi T., Lalla N.P., Annapoorni S., Chandana R, J. Phys. D Appl. Phys., 45 (2012), 32530.MohantyP.MishraN.C.ChoudharyR.J.BanerjeeA.ShripathiT.LallaN.P.AnnapoorniS.ChandanaRJ. Phys. D Appl. Phys4520123253010.1088/0022-3727/45/32/325301Search in Google Scholar

[16] Tian J., Gao H., Kong H., Yang P., Zhan W., Chu J., Nanoscale Res. Lett., 8 (2013), 533.TianJ.GaoH.KongH.YangP.ZhanW.ChuJ.Nanoscale Res. Lett8201353310.1186/1556-276X-8-533387835024350904Search in Google Scholar

[17] Santara B., Pal B., Giri P.K., J. Appl. Phys., 110 (2011), 114322.SantaraB.PalB.GiriP.K.J. Appl. Phys110201111432210.1063/1.3665883Search in Google Scholar

[18] Nakai I., Sasano M., Inui K., Korekawa T., Ishijima H., Katoh H., J. Korean Phys. Soc., 63 (2013), 532.NakaiI.SasanoM.InuiK.KorekawaT.IshijimaH.KatohH.J. Korean Phys. Soc63201353210.3938/jkps.63.532Search in Google Scholar

[19] Kaushik A., Dalela B., Kumar S., Alvi P.A., Dalela S., J. Alloy. Compd., 552 (2013), 274.KaushikA.DalelaB.KumarS.AlviP.A.DalelaS.J. Alloy. Compd552201327410.1016/j.jallcom.2012.10.076Search in Google Scholar

[20] Kim J.Y., Park J.H., Park B.G., Noh H.J., Oh S.J., Yang J.S., Kim D.H., Bu S.D., Noh T.W., Lin H.J., Hsieh H.H., Chen C.T., Phys. Rev. Lett., 90 (2003), 017401.KimJ.Y.ParkJ.H.ParkB.G.NohH.J.OhS.J.YangJ.S.KimD.H.BuS.D.NohT.W.LinH.J.HsiehH.H.ChenC.T.Phys. Rev. Lett90200301740110.1103/PhysRevLett.90.01740112570648Search in Google Scholar

[21] Shinde S.R., Ogale S.B., Sarma S.D., Simpson J.R., Drew H.D., Lofland S.E., Lanci C., Buban J.P., Browning N.D., Kulkarni V.N., Higgins J., Sharma R.P., Greene R.L., Venkatesan T., Phys. Rev. B, 67 (2003), 115211.ShindeS.R.OgaleS.B.SarmaS.D.SimpsonJ.R.DrewH.D.LoflandS.E.LanciC.BubanJ.P.BrowningN.D.KulkarniV.N.HigginsJ.SharmaR.P.GreeneR.L.VenkatesanT.Phys. Rev. B67200311521110.1103/PhysRevB.67.115211Search in Google Scholar

[22] Kaspar T.C., Droubay T., McCready D.E., Nachimuthu P., Heald S.M., Wang C.M., Lea A.S., Shutthanandan V., Chamber S.A., Toney M.F., J. Vac. Sci. Technol. B, 24 (2006), 2012.KasparT.C.DroubayT.McCreadyD.E.NachimuthuP.HealdS.M.WangC.M.LeaA.S.ShutthanandanV.ChamberS.A.ToneyM.F.J. Vac. Sci. Technol. B242006201210.1116/1.2216723Search in Google Scholar

[23] Xu J., Shi S., Li L., Zhang X., Wang Y., Chen X., Wang J., Lv L., Zhang F., Zhong W., J. Appl. Phys., 107 (2010), 053910.XuJ.ShiS.LiL.ZhangX.WangY.ChenX.WangJ.LvL.ZhangF.ZhongW.J. Appl. Phys107201005391010.1063/1.3319556Search in Google Scholar

[24] Rashad M.M., Elsayed E.M., Al-Kotb M.S., Shalan A.E., J. Alloy. Compd., 581 (2013), 71.RashadM.M.ElsayedE.M.Al-KotbM.S.ShalanA.E.J. Alloy. Compd58120137110.1016/j.jallcom.2013.07.041Search in Google Scholar

[25] Huang C., Liu X., Kong L., Lan W., Su Q., Wang Y., Appl. Phys. A, 87 (2007), 781.HuangC.LiuX.KongL.LanW.SuQ.WangY.Appl. PhysA, 87200778110.1007/s00339-007-3902-3Search in Google Scholar

[26] Sadanandam G., Lalitha K., Kumari V.D., Shankar M.V., Subrahmanyam M., Int. J. Hydrogen Energ., 38 (2013), 9655.SadanandamG.LalithaK.KumariV.D.ShankarM.V.SubrahmanyamM.Int. J. Hydrogen Energ382013965510.1016/j.ijhydene.2013.05.116Search in Google Scholar

[27] Guskos N., Zolnierkiewicz G., Guskos A., Typek j., Berczynski P., Dolat D., Mozia S., Aidinis K., Morawski A.W., Nukleonika, 60 (2015), 411.GuskosN.ZolnierkiewiczG.GuskosA.TypekJ.BerczynskiP.DolatD.MoziaS.AidinisK.MorawskiA.W.Nukleonika60201541110.1515/nuka-2015-0073Search in Google Scholar

[28] Dolat D., Mozia S., Wrobel R. j., Moszynski D., Ohtani, B., Guskos N., Morawski A.W., Appl. Catal. B-Environ., 162 (2015), 310.DolatD.MoziaS.WrobelR. J.MoszynskiD.OhtaniB.GuskosN.MorawskiA.W.Appl. Catal. B-Environ162201531010.1016/j.apcatb.2014.07.001Search in Google Scholar

[29] Guskos N., Zolnierkiewicz G., Guskos A., Typek J., Berczynski P., Dolat D., Mozia S., Morawski A.W., Magnetic Resonance Study of Nickel and Nitrogen Co-modified Titanium Dioxide Nanocomposites, in: Bonca J., Kruchinin S. (Eds.), NATO Science for Peace and Security Series C: Environmental Security, Nanotechnology in the Security Systems, Springer, Dordrecht, 2015, p. 33.GuskosN.ZolnierkiewiczG.GuskosA.TypekJ.BerczynskiP.DolatD.MoziaS.MorawskiA.W.Magnetic Resonance Study of Nickel and Nitrogen Co-modified Titanium Dioxide NanocompositesBoncaJ.KruchininS.NATO Science for Peace and Security Series C: Environmental Security, Nanotechnology in the Security SystemsSpringerDordrecht201533Search in Google Scholar

[30] Guskos N., Typek J., Maryniak M., Narkiewicz U., Kucharewicz I., Wrobel R., Mater. Sci.-Poland, 23 (2005), 1001.GuskosN.TypekJ.MaryniakM.NarkiewiczU.KucharewiczI.WrobelR.Mater. Sci.-Poland2320051001Search in Google Scholar

[31] Bodziony T., Guskos N., Typek j., Roslaniec Z., Narkiewicz U., Maryniak M., Mater. Sci.-Poland, 23 (2005), 1055.BodzionyT.GuskosN.TypekJ.RoslaniecZ.NarkiewiczU.MaryniakM.Mater. Sci.-Poland2320051055Search in Google Scholar

[32] Narkiewicz U., Arabczyk W., Pełech I., Guskos N., Typek J., Maryniak M., Wozniak M.J., Matysiak H., Kurzydlowski K.J., Mater. Sci.-Poland, 24 (2006), 1067.NarkiewiczU.ArabczykW.PełechI.GuskosN.TypekJ.MaryniakM.WozniakM.J.MatysiakH.KurzydlowskiK.J.Mater. Sci.-Poland2420061067Search in Google Scholar

[33] Hurum D.C., Agrios A.G., Gray K.A., Rajh T., Thurnauer M.C., J. Phys. Chem. B, 107 (2003), 4545.HurumD.C.AgriosA.G.GrayK.A.RajhT.ThurnauerM.C.J. Phys. Chem. B1072003454510.1021/jp0273934Search in Google Scholar

[34] Kumar C.P., Gopal N. O., Wang T. C., Wong M.S., Ke S.C., J. Phys. Chem. B, 110 (2006), 5223.KumarC.P.GopalN. O.WangT. C.WongM.S.KeS.C.J. Phys. Chem. B1102006522310.1021/jp057053t16539451Search in Google Scholar

[35] Ribbens S., Caretti I., Beyers E., Zamani S., Vinck E., Van Doorslaer S., Cool P., J. Phys. Chem. C, 115 (2011), 2302.RibbensS.CarettiI.BeyersE.ZamaniS.VinckE.Van DoorslaerS.CoolP.J. Phys. Chem. C1152011230210.1021/jp112005mSearch in Google Scholar

[36] Dolat D., Moszynski D., Guskos N., Ohtani B., Morawski A.W., Appl. Surf. Sci., 266 (2013), 410.DolatD.MoszynskiD.GuskosN.OhtaniB.MorawskiA.W.Appl. Surf. Sci266201341010.1016/j.apsusc.2012.12.048Search in Google Scholar

[37] Kliava J., Electron Magnetic Resonance of Nanoparticles: Superparamagnetic Resonance, in: Gubin S.P (Ed.), Magnetic nanoparticles, Wiley-VCH, Weinheim, 2009, p. 255.KliavaJ.Electron Magnetic Resonance of Nanoparticles: Superparamagnetic ResonanceGubinS.PMagnetic nanoparticlesWiley-VCHWeinheim200925510.1002/9783527627561.ch7Search in Google Scholar

[38] Helminiak A., Arabczyk W., Zolnierkiewicz G., Guskos N., Typek J., Rev. Adv. Mat. Sci., 29 (2011), 166.HelminiakA.ArabczykW.ZolnierkiewiczG.GuskosN.TypekJ.Rev. Adv. Mat. Sci292011166Search in Google Scholar

[39] Guskos N., Likodimos V., Glenis S., Maryniak M., Baran M., Szymczak R., Roslaniec Z., Kwiatkowska M., Petridis D., J. Nanosci. Nanotech., 8 (2008), 2127.GuskosN.LikodimosV.GlenisS.MaryniakM.BaranM.SzymczakR.RoslaniecZ.KwiatkowskaM.PetridisD.J. Nanosci. Nanotech82008212710.1166/jnn.2008.06318572623Search in Google Scholar

[40] Guskos N., Glenis S., Zolnierkiewicz G., Guskos A., Typek J., Berczynski P., Dolat D., Grzmil B., Ohtani B., Morawski. A.W., J. Alloy. Compd., 606 (2014), 32.GuskosN.GlenisS.ZolnierkiewiczG.GuskosA.TypekJ.BerczynskiP.DolatD.GrzmilB.OhtaniB.MorawskiA.W.J. Alloy. Compd60620143210.1016/j.jallcom.2014.03.130Search in Google Scholar

[41] Guskos N., Typek J., Zolnierkiewicz G., Diamantopoulou A., Mozia S., Morawski A.W., Magnetic Properties of Cobalt and Nitrogen Co-modified Titanium Dioxide Nanocomposites, in: Bonca j., Kruchinin S. (Eds.), NATO Science for Peace and Security Series C: Environmental Security, Nanotechnology in the Security Systems, to be published in 2016.GuskosN.TypekJ.ZolnierkiewiczG.DiamantopoulouA.MoziaS.MorawskiA.W.Magnetic Properties of Cobalt and Nitrogen Co-modified Titanium Dioxide NanocompositesBoncaJ.KruchininS.NATO Science for Peace and Security Series C: Environmental Security, Nanotechnology in the Security Systemsto be published in201610.1007/978-94-017-7593-9_9Search in Google Scholar

[42] Knobel M., Nunes W.C., Socolovsky L.M., De Biasi E., Vargas J.M., Denardin J.C., J. Nanosci. Nanotech., 8 (2008), 2836.KnobelM.NunesW.C.SocolovskyL.M.De BiasiE.VargasJ.M.DenardinJ.C.J. Nanosci. Nanotech82008283610.1166/jnn.2008.15348Search in Google Scholar

eISSN:
2083-134X
Langue:
Anglais