Accès libre

Numerical Evaluation of the Solar Collectors Selfshading Related to their Building Integration

À propos de cet article

Citez

[1]. 31/2010/EU Directive (EPBD Recast) of the European Parliament and European Council, on the Buildings Energy Performance, EU Official Journal, 18.06.2010. pp. L153/13 - L153/35.Search in Google Scholar

[2]. European Commission. (2015). Towards an Integrated Strategic Energy Technology (SET) Plan: Accelerating the European Energy System Transformation, Brussels, C(2015) 6317 final report. 17 pages.Search in Google Scholar

[3]. European Technology Platform on Renewable Heating and Cooling. (2015). Solar Heating and Cooling Technology Roadmap,available at http://www.rhc-platform.org/publications/.Search in Google Scholar

[4]. Deutsche Solarthermie-Technologie Plattform. (2014). Forschungsstrategie Niedertemperatur-Solarthermie 2030, available at http://www.solarthermietechnologie.de/home/dsttp-aktuelles/detailansicht/browse/2/article/35/solarwaerme-f/ .Search in Google Scholar

[5]. Cappel C, Tilmann E.K., Maurer C. (2014). Research and Development Roadmap for façade-integrated solar thermal systems. Fraunhofer-Institut fur Solare Energiesysteme. ISE. 50 pages.Search in Google Scholar

[6]. Kalogirou S.A. et al. (2017). Building Integration of Solar Thermal Systems. Design and Applications Handbook, COST Action TU1205. 455 pages.Search in Google Scholar

[7]. Munari Probst M.C., Roecker C. (2007). Towards an improved architectural quality of building integrated solar thermal systems (BIST).Solar Energy 81. pp.1104-1116.10.1016/j.solener.2007.02.009Open DOISearch in Google Scholar

[8]. Lamnatou C., Mondol J.D., Chemisana D., Maurer C. (2015). Modelling and simulation of Building-Integrated solar thermal systems :Behaviour of the coupled building/system configuration, Renewable and Sustainable Energy Reviews 48. pp.178-191.Search in Google Scholar

[9]. Lamnatou C., Mondol J.D., Chemisana D., Maurer C. (2015). Modelling and simulation of Building-Integrated solar thermal systems :Behaviour of the system configuration. Renewable and Sustainable Energy Reviews 45. pp.36-51.10.1016/j.rser.2015.03.075Search in Google Scholar

[10]. Delisle V., Kummert M. (2016). Cost-benefit analysis of integrating BIPV-T air systems into energyefficient homes. Solar Energy 136. pp.385-400.10.1016/j.solener.2016.07.005Search in Google Scholar

[11]. Shukla A.K., Sudhakar K., Baredar P. - Recent advancement in BIPV product technologies: A review, Energy and Buildings 140 (2017). pp.188-195. Search in Google Scholar

[12]. Visa I., Moldovan M., Comsit M., Neagoe M., Duta A. (2017). Facades integrated solar-thermal collectors- challenges and solutions. Energy Procedia 112. pp.176-185.10.1016/j.egypro.2017.03.1080Search in Google Scholar

[13]. Dupeyrat P., Menezo C., Fortuin S. (2014). Study of th thermal and electrical performances of PVT solar hot water systems. Energy and Buildings 68. pp. 751-755.10.1016/j.enbuild.2012.09.032Open DOISearch in Google Scholar

[14]. Fudholi A., Sopian K., Yazdi M.H., Ruslan M.H., Ibrahim A., Kazem H.A. (2014). Performance analysis of photovoltaic thermal (PVT) water collectors. Energy Conversion and Management 78. pp.641-651.10.1016/j.enconman.2013.11.017Open DOISearch in Google Scholar

[15]. Rommel M., Zenhausern D., Baggenstos A., Turk O., Brunold S. (2015). Development of glazed and unglazed PVT collectors and first results of their application in different projects. Energy Procedia 70. pp.318-323.10.1016/j.egypro.2015.02.129Search in Google Scholar

[16]. Aste N., Del Pero C., Leonforte F. (2012). Optimization of solar thermal fraction in PVT systems. Energy Procedia 30. pp.8-18.10.1016/j.egypro.2012.11.003Search in Google Scholar

[17]. Meteonorm software - available at www.meteonorm.com.Search in Google Scholar

eISSN:
2066-6934
Langue:
Anglais
Périodicité:
4 fois par an
Sujets de la revue:
Engineering, Introductions and Overviews, other