À propos de cet article

Citez

1. Große, M.; Lehmann, E.; Steinbrück, M.; Kühne, G.; Stuckert, J. Influence of oxide layer morphology on hydrogen concentration in tin and niobium containing zirconium alloys after high temperature steam oxidation. Journal of Nuclear Materials 2009, 385, 339-345.Search in Google Scholar

2. Labib, A.; Harris, M.J. Learning how to learn from failures: The Fukushima nuclear disaster. Engineering Failure Analysis 2015, 47, 117-128.Search in Google Scholar

3. Tsuruda, T.; Nuclear power plant explosions at Fukushima-Daiichi. Procedia Engineering 2015, 62, 71-77.Search in Google Scholar

4. Yamamoto, Y.; Field, K. G.; Snead, L. L. IAEA TECDOC SERIES 2016, 55.Search in Google Scholar

5. Ashcheulova, P.; Škoda, R.; Škarohlíd, J.; Taylora, A.; Fekete, L.; Fendrych, F.; Vega, R.; Shao, L.; Kalvoda, L.; Vratislav, S.; Cháb, V.; Horáková, K.; Kůsová, K.; Klimša, L.; Kopeček, J.; Sajdl, P.; Macák, J.; Johnson, S.; Kratochvílová, I. Thin polycrystalline diamond films protecting zirconium alloyssurfaces: From technology to layer analysis and applicationin nuclear facilities. Applied Surface Science 2015, 359, 621-628.Search in Google Scholar

6. Kratochvílová, I.; Škoda, R.; Škarohlíd, J.; Ashcheulov, P.; Jäger, A.; Racek, J.; Taylor, A.; Shao, L. Nanosized polycrystalline diamond cladding for surface protection of zirconium nuclear fuel tubes. Journal of Materials Processing Technology 2014, 214, 2600-2605.Search in Google Scholar

7. Krausová, A.; et al. Polykrystalická diamantová vrstva: vhodná ochrana povrchu zirkoniových slitin?. Koroze a ochrana materiálu 2015, 59 (2), 37-43.10.1515/kom-2015-0012Search in Google Scholar

8. Daub, K.; Nieuwenhove, R.; Nordin, H. Investigation of the impact of coatings on corrosion and hydrogen uptake of Zircaloy-4. Journal of Nuclear Materials 2015, 467, 260-270.Search in Google Scholar

9. Kim, H.-G.; Kim, I.-H.; Jung, Y.-I.; Park, D.-J.; Park, J.- Y.; Koo, Y.-H. Adhesion property and high-temperature oxidation behavior of Crcoated Zircaloy-4 cladding tube prepared by 3D laser coating. Journal of Nuclear Materials 2015, 465, 531-539.Search in Google Scholar

10. Kuprin, А.S.; Belous, V.А.; Voyevodin, V.N.; Bryk, V.V.; Vasilenko, R.L.; Ovcharenko, V.D.; Reshetnyak, E.N.; Tolmachova, G.N.; V‘yugov, P.N. Vacuum-arc chromiumbased coatings for protection of zirconium alloys from the high-temperature oxidation in air. Journal of Nuclear Materials 2015, 465, 400-406.Search in Google Scholar

11. Park, J.-H.; Kim, H.-G.; Park, J.-Y.; Jung, Y.-I.; Park, D.- J.; Koo, Y.-H. High temperature steam-oxidation behavior of arc ion plated Cr coatings for accident tolerant fuel claddings. Surface & Coatings Technology 2015, 280, 256-259.Search in Google Scholar

12. Kawana, A.; Ichimura, H.; Iwata, Y.; Ono, S. Development of PVD ceramic coatings for valve seats. Surface and Coatings Technology 1996, 86-87, 212-217.10.1016/S0257-8972(96)02983-0Search in Google Scholar

13. Krausová, A.; Macák, J.; Sajdl, P.; Novotý, R.; Renčiuková, V.; Vrtílková, V. In-situ electrochemical study of Zr1n alloy corrosion in high temperature Li+ containing water. Journal of Nuclear Materials 2015, 467, 302-310.Search in Google Scholar

14. Cox, B.; Wu, C. Transient effects of lithium hydroxide and boric acid on Zircaloy corrosion. Journal of Nuclear Materials 1995, 224 169-178.10.1016/0022-3115(95)00043-7Search in Google Scholar

eISSN:
1804-1213
Langue:
Anglais
Périodicité:
4 fois par an
Sujets de la revue:
Industrial Chemistry, Chemical Engineering, Materials Sciences, Ceramics and Glass