Accès libre

Can Learning Vector Quantization be an Alternative to SVM and Deep Learning? - Recent Trends and Advanced Variants of Learning Vector Quantization for Classification Learning

À propos de cet article

Citez

[1] Y. LeCun, Y. Bengio, and G. Hinton. Deep learning. Nature, 521:436-444, May 2015.10.1038/nature1453926017442Search in Google Scholar

[2] P.J. Werbos. Beyond Regression: New Tools for Prediction and Analysis in the Behavorial Sciences. PhD thesis, Havard University, Cambridge, MA., 1974.Search in Google Scholar

[3] G. Cybenko. Approximations by superpositions of a sigmoidal function. Mathematics of Control, Signals and Systems, 2(4): 303-314, 1989.10.1007/BF02551274Search in Google Scholar

[4] T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical Learning. Springer Verlag, Heidelberg-Berlin, 2001.10.1007/978-0-387-21606-5Search in Google Scholar

[5] Y. Bengio. Learning deep architectures for AI. Foundations and Trends in Machine Learning, 2(1):1-127, 2009.10.1561/2200000006Search in Google Scholar

[6] Simon Haykin. Neural Networks - A Comprehensive Foundation. IEEE Press, New York, 1994.Search in Google Scholar

[7] C.M. Bishop. Pattern Recognition and Machine Learning. Springer, 2006.Search in Google Scholar

[8] R.O. Duda and P.E. Hart. Pattern Classification and Scene Analysis. Wiley, New York, 1973.Search in Google Scholar

[9] K.L. Oehler and R.M. Gray. Combining image compressing and classification using vector quantization. IEEE Transactions on Pattern Analysis and Machine Intelligence, 17(5):461-473, 1995.10.1109/34.391396Search in Google Scholar

[10] M. Biehl, B. Hammer, and T. Villmann. Prototypebased models in machine learning. Wiley Interdisciplinary Reviews: Cognitive Science, 7(2):92-111, 2016.10.1002/wcs.137826800334Search in Google Scholar

[11] P. L. Zador. Asymptotic quantization error of continuous signals and the quantization dimension. IEEE Transaction on Information Theory, IT-28:149-159, 1982.10.1109/TIT.1982.1056490Search in Google Scholar

[12] Y. Linde, A. Buzo, and R.M. Gray. An algorithm for vector quantizer design. IEEE Transactions on Communications, 28:84-95, 1980.10.1109/TCOM.1980.1094577Search in Google Scholar

[13] T. Lehn-Schiler, A. Hegde, D. Erdogmus, and J.C. Principe. Vector quantization using information theoretic concepts. Natural Computing, 4(1):39-51, 2005.10.1007/s11047-004-9619-8Search in Google Scholar

[14] J.C. Principe. Information Theoretic Learning. Springer, Heidelberg, 2010.10.1007/978-1-4419-1570-2Search in Google Scholar

[15] Teuvo Kohonen. Self-Organizing Maps, volume 30 of Springer Series in Information Sciences. Springer, Berlin, Heidelberg, 1995. (Second Extended Edition 1997).10.1007/978-3-642-97610-0Search in Google Scholar

[16] Thomas M. Martinetz, Stanislav G. Berkovich, and Klaus J. Schulten. ’Neural-gas’ network for vector quantization and its application to time-series prediction. IEEE Trans. on Neural Networks, 4(4):558-569, 1993.10.1109/72.238311Search in Google Scholar

[17] B. Schlkopf and A. Smola. Learning with Kernels. MIT Press, Cambridge, 2002.Search in Google Scholar

[18] Teuvo Kohonen. Learning vector quantization for pattern recognition. Report TKK-F-A601, Helsinki University of Technology, Espoo, Finland, 1986.Search in Google Scholar

[19] Teuvo Kohonen. Learning Vector Quantization. Neural Networks, 1(Supplement 1):303, 1988.10.1016/0893-6080(88)90334-6Search in Google Scholar

[20] Teuvo Kohonen. Improved versions of Learning Vector Quantization. In Proc. IJCNN-90, International Joint Conference on Neural Networks, San Diego, volume I, pages 545-550, Piscataway, NJ, 1990. IEEE Service Center.10.1109/IJCNN.1990.137622Search in Google Scholar

[21] D. Nova and P.A. Est´evez. A review of learning vector quantization classifiers. Neural Computation and Applications, 25(511-524), 2013.10.1007/s00521-013-1535-3Search in Google Scholar

[22] M. Kaden, M. Lange, D. Nebel, M. Riedel, T. Geweniger, and T. Villmann. Aspects in classification learning - Review of recent developments in Learning Vector Quantization. Foundations of Computing and Decision Sciences, 39(2):79-105, 2014.10.2478/fcds-2014-0006Search in Google Scholar

[23] B. Fritzke. The LBG-U method for vector quantization - an improvement over LBG inspired from neural networks. Neural Processing Letters, 5(1):35-45, 1997.10.1023/A:1009653226428Search in Google Scholar

[24] H.-U. Bauer and Th. Villmann. Growing a Hypercubical Output Space in a Self-Organizing Feature Map. IEEE Transactions on Neural Networks, 8(2):218-226, 1997.10.1109/72.557659Search in Google Scholar

[25] F. Hamker. Life-long learning cell structures - continuously learning without catastrophic interference. Neural Networks, 14:551-573, 2001.10.1016/S0893-6080(01)00018-1Search in Google Scholar

[26] H. Robbins and S. Monro. A stochastic approximation method. Ann. Math. Stat., 22:400-407, 1951.10.1214/aoms/1177729586Search in Google Scholar

[27] H.J. Kushner and D.S. Clark. Stochastic Approximation Methods for Constrained and Unconstrained Systems. Springer-Verlag, New York, 1978.10.1007/978-1-4684-9352-8Search in Google Scholar

[28] S. Graf and H. Luschgy. Foundations of Quantization for Probability Distributions, volume 1730 of Lect. Notes in Mathematics. Springer, Berlin, 2000.10.1007/BFb0103945Search in Google Scholar

[29] G. Voronoi. Nouvelles aoolications des parametres la theorie des formes quadratiques. deuxime mmorie: Recherches sur les paralllodres primitifs. J. reine angew. Math., 134:198-287, 1908.Search in Google Scholar

[30] A. Sato and K. Yamada. Generalized learning vector quantization. In D. S. Touretzky, M. C. Mozer, and M. E. Hasselmo, editors, Advances in Neural Information Processing Systems 8. Proceedings of the 1995 Conference, pages 423-9. MIT Press, Cambridge, MA, USA, 1996.Search in Google Scholar

[31] K. Crammer, R. Gilad-Bachrach, A. Navot, and A.Tishby. Margin analysis of the LVQ algorithm. In S. Becker, S. Thrun, and K. Obermayer, editors, Advances in Neural Information Processing (Proc. NIPS 2002), volume 15, pages 462-469, Cambridge, MA, 2003. MIT Press.Search in Google Scholar

[32] S. Seo and K. Obermayer. Soft learning vector quantization. Neural Computation, 15:1589-1604, 2003.10.1162/08997660332189181912816567Search in Google Scholar

[33] S. Seo, M. Bode, and K. Obermayer. Soft nearest prototype classification. IEEE Transaction on Neural Networks, 14:390-398, 2003.10.1109/TNN.2003.80940718238021Search in Google Scholar

[34] A. Boubezoul, S. Paris, and M. Ouladsine. Application of the cross entropy method to the GLVQ algorithm. Pattern Recognition, 41:3173-3178, 2008.10.1016/j.patcog.2008.03.016Search in Google Scholar

[35] B. Hammer, M. Strickert, and T. Villmann. Supervised neural gas with general similarity measure. Neural Processing Letters, 21(1):21-44, 2005.10.1007/s11063-004-3255-2Search in Google Scholar

[36] A.K. Qin and P.N. Suganthan. Initialization insensitive LVQ algorithm based on cost-function adaptation. Pattern Recognition, 38:773-776, 2004.10.1016/j.patcog.2004.11.011Search in Google Scholar

[37] Keren O. Perlmutter, Sharon M. Perlmutter, Robert M. Gray, Richard A. Olshen, and Karen L. Oehler. Bayes risk weighted vector quantization with posterior estimation for image compression and classification. IEEE Trans. on Image Processing, 5(2):347-360, February 1996.10.1109/83.48077018285118Search in Google Scholar

[38] B. Hammer, D. Nebel, M. Riedel, and T. Villmann. Generative versus discriminative prototype based classification. In T. Villmann, F.-M. Schleif, M. Kaden, and M. Lange, editors, Advances in Self- Organizing Maps and Learning Vector Quantization: Proceedings of 10th InternationalWorkshopWSOM 2014, Mittweida, volume 295 of Advances in Intelligent Systems and Computing, pages 123-132, Berlin, 2014. Springer.10.1007/978-3-319-07695-9_12Search in Google Scholar

[39] M. Kaden, M. Riedel, W. Hermann, and T. Villmann. Border-sensitive learning in generalized learning vector quantization: an alternative to support vector machines. Soft Computing, 19(9):2423-2434, 2015.Search in Google Scholar

[40] E. Pekalska and R.P.W. Duin. The Dissimilarity Representation for Pattern Recognition: Foundations and Applications. World Scientific, 2006.10.1142/5965Search in Google Scholar

[41] T. Villmann, M. Kaden, D. Nebel, and A. Bohnsack. Data similarities, dissimilarities and types of inner products - a mathematical characterization in the context of machine learning. Machine Learning Reports, 9(MLR-04-015):19-29, 2015. ISSN:1865-3960, http://www.techfak.unibielefeld.de/˜fschleif/mlr/mlr042015.pdf.Search in Google Scholar

[42] M. Lange, D. Zühlke, O. Holz, and T. Villmann. Applications of lp-norms and their smooth approximations for gradient based learning vector quantization. In M. Verleysen, editor, Proc. of European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning (ESANN’2014), pages 271-276, Louvain-La- Neuve, Belgium, 2014. i6doc.com.Search in Google Scholar

[43] K. Bunte, F.-M. Schleif, and M. Biehl. Adaptive learning for complex-valued data. In M. Verleysen, editor, Proc. of European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning (ESANN’2012), pages 381-386, Louvain-La-Neuve, Belgium, 2012. i6doc.com.Search in Google Scholar

[44] M. Gay, M. Kaden, M. Biehl, A. Lampe, and T. Villmann. Complex variants of GLVQ based on Wirtingers calculus. In E. Mer´enyi, M.J. Mendenhall, and P. O’Driscoll, editors, Advances in Self- Organizing Maps and Learning Vector Quantization: Proceedings of 11th International Workshop WSOM 2016, volume 428 of Advances in Intelligent Systems and Computing, pages 293-303, Berlin-Heidelberg, 2016. Springer.10.1007/978-3-319-28518-4_26Search in Google Scholar

[45] T. Villmann and S. Haase. Divergence based vector quantization. Neural Computation, 23(5):1343-1392, 2011.10.1162/NECO_a_0011021299418Search in Google Scholar

[46] E. Mwebaze, P. Schneider, F.-M. Schleif, J.R. Aduwo, J.A. Quinn, S. Haase, T. Villmann, and M. Biehl. Divergence based classification in learning vector quantization. Neurocomputing, 74(9):1429-1435, 2011.10.1016/j.neucom.2010.10.016Search in Google Scholar

[47] M. Kästner, B. Hammer, M. Biehl, and T. Villmann. Functional relevance learning in generalized learning vector quantization. Neurocomputing, 90(9):85-95, 2012.10.1016/j.neucom.2011.11.029Search in Google Scholar

[48] F. Rossi, N. Delannay, B. Conan-Gueza, and M. Verleysen. Representation of functional data in neural networks. Neurocomputing, 64:183-210, 2005.10.1016/j.neucom.2004.11.012Search in Google Scholar

[49] F. Melchert, U. Seiffert, and M. Biehl. Functional representation of prototypes in lvq and relevance learning. In E. Mer´enyi, M.J. Mendenhall, and P. O’Driscoll, editors, Advances in Self-Organizing Maps and Learning Vector Quantization: Proceedings of 11th International Workshop WSOM 2016, volume 428 of Advances in Intelligent Systems and Computing, pages 317-327, Berlin-Heidelberg, 2016. Springer.10.1007/978-3-319-28518-4_28Search in Google Scholar

[50] M. Strickert, U. Seiffert, N. Sreenivasulu, W. Weschke, T. Villmann, and B. Hammer. Generalized relevance LVQ (GRLVQ) with correlation measures for gene expression analysis. Neurocomputing, 69(6-7):651-659, March 2006.10.1016/j.neucom.2005.12.004Search in Google Scholar

[51] S. Saralajew and T. Villmann. Adaptive tangent metrics in generalized learning vector quantization for transformation and distortion invariant classification learning. In Proceedings of the International Joint Conference on Neural networks (IJCNN) , Vancover, pages 2672-2679. IEEE Computer Society Press, 2016.10.1109/IJCNN.2016.7727534Search in Google Scholar

[52] S. Saralajew, D. Nebel, and T. Villmann. Adaptive Hausdorff distances and tangent distance adaptation for transformation invariant classification learning. In A. Hirose, editor, Proceedings of the International Conference on Neural Information Processing (ICONIP) , Kyoto, volume 9949 of LNCS, pages 362-371. Springer, 2016.10.1007/978-3-319-46675-0_40Search in Google Scholar

[53] I. Steinwart. On the influence of the kernel on the consistency of support vector machines. Journal of Machine Learning Research, 2:67-93, 2001.Search in Google Scholar

[54] I. Steinwart and A. Christmann. Support Vector Machines. Information Science and Statistics. Springer Verlag, Berlin-Heidelberg, 2008.Search in Google Scholar

[55] A.K. Qin and P.N. Suganthan. A novel kernel prototype-based learning algorithm. In Proceedings of the 17th International Conference on Pattern Recognition (ICPR’04), volume 4, pages 621-624, 2004.10.1109/ICPR.2004.1333849Search in Google Scholar

[56] F.-M. Schleif, T. Villmann, B. Hammer, and P. Schneider. Efficient kernelized prototype based classification. International Journal of Neural Systems, 21(6):443-457, 2011.10.1142/S012906571100295XSearch in Google Scholar

[57] T. Villmann, S. Haase, and M. Kaden. Kernelized vector quantization in gradient-descent learning. Neurocomputing, 147:83-95, 2015.10.1016/j.neucom.2013.11.048Search in Google Scholar

[58] D. Hofmann, A. Gisbrecht, and B. Hammer. Efficient approximations of robust soft learning vector quantization for non-vectorial data. Neurocomputing, 147:96-106, 2015.10.1016/j.neucom.2013.11.044Search in Google Scholar

[59] D. Nebel, M. Kaden, A. Bohnsack, and T. Villmann. Types of (dis-)similarities and adaptive mixtures thereof for improved classification learning. Neurocomputing, page in press, 2017.10.1016/j.neucom.2016.12.091Search in Google Scholar

[60] B. Hammer, D. Hofmann, F.-M. Schleif, and X. Zhu. Learning vector quantization for (dis- )similarities. Neurocomputing, 131:43-51, 2014.10.1016/j.neucom.2013.05.054Search in Google Scholar

[61] D. Nebel, B. Hammer, K. Frohberg, and T. Villmann. Median variants of learning vector quantization for learning of dissimilarity data. Neurocomputing, 169:295-305, 2015.10.1016/j.neucom.2014.12.096Search in Google Scholar

[62] B. Hammer and T. Villmann. Generalized relevance learning vector quantization. Neural Networks, 15(8-9):1059-1068, 2002.10.1016/S0893-6080(02)00079-5Search in Google Scholar

[63] B. Hammer, M. Strickert, and T. Villmann. On the generalization ability of GRLVQ networks. Neural Processing Letters, 21(2):109-120, 2005.10.1007/s11063-004-1547-1Search in Google Scholar

[64] T. Villmann, M. Kästner, D. Nebel, and M. Riedel. Lateral enhancement in adaptative metric learning for functional data. Neurocomputing, 131:23-31, 2014.10.1016/j.neucom.2013.07.049Search in Google Scholar

[65] P. Schneider, B. Hammer, and M. Biehl. Adaptive relevance matrices in learning vector quantization. Neural Computation, 21:3532-3561, 2009.10.1162/neco.2009.11-08-90819764875Search in Google Scholar

[66] P. Schneider, K. Bunte, H. Stiekema, B. Hammer, T. Villmann, and Michael Biehl. Regularization in matrix relevance learning. IEEE Transactions on Neural Networks, 21(5):831-840, 2010.10.1109/TNN.2010.204272920236882Search in Google Scholar

[67] M. Biehl, B. Hammer, F.-M. Schleif, P. Schneider, and T. Villmann. Stationarity of matrix relevance LVQ. In Proc. of the International Joint Conference on Neural Networks 2015 (IJCNN), pages 1-8, Los Alamitos, 2015. IEEE Computer Society Press.10.1109/IJCNN.2015.7280441Search in Google Scholar

[68] K. Bunte, P. Schneider, B. Hammer, F.-M. Schleif, T. Villmann, and M. Biehl. Limited rank matrix learning, discriminative dimension reduction and visualization. Neural Networks, 26(1):159-173, 2012.10.1016/j.neunet.2011.10.00122041220Search in Google Scholar

[69] E. Mwebaze, G. Bearda, M. Biehl, and D. Zühlke. Combining dissimilarity measures for prototypebased classification. In M. Verleysen, editor, Proceedings of the European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning (ESANN’2015), pages 31-36, Louvain-La-Neuve, Belgium, 2015. i6doc.com.Search in Google Scholar

[70] D. Zühlke, F.-M. Schleif, T. Geweniger, S. Haase, and T. Villmann. Learning vector quantization for heterogeneous structured data. In M. Verleysen, editor, Proc. of European Symposium on Artificial Neural Networks (ESANN’2010), pages 271-276, Evere, Belgium, 2010. d-side publications.Search in Google Scholar

[71] J. Schmidhuber. Deep learning in neural networks: An overview. Neural Networks, 61:85-117, 2015.Search in Google Scholar

[72] U. Knauer, A. Backhaus, and U. Seiffert. Beyond standard metrics - on the selection and combination of distance metrics for an improved classification of hyperspectral data. In T. Villmann, F.-M. Schleif, M. Kaden, and M. Lange, editors, Advances in Self- Organizing Maps and Learning Vector Quantization: Proceedings of 10th InternationalWorkshopWSOM 2014, Mittweida, volume 295 of Advances in Intelligent Systems and Computing, pages 167-177, Berlin, 2014. Springer.10.1007/978-3-319-07695-9_16Search in Google Scholar

[73] M. Kaden, D. Nebel, and T. Villmann. Adaptive dissimilarity weighting for prototype-based classification optimizing mixtures of dissimilarities. In M. Verleysen, editor, Proceedings of the European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning (ESANN’2016), pages 135-140, Louvain-La- Neuve, Belgium, 2016. i6doc.com.Search in Google Scholar

[74] D.G. Lowe. Object recognition from local scaleinvariant features. In The Proceedings of the Seventh IEEE International Conference on Computer Vision, volume 2, pages 1150-1157, 1999.10.1109/ICCV.1999.790410Search in Google Scholar

[75] D.G. Lowe. Distinctive image features from scaleinvariant keypoints. International Journal of Computer Vision, 60(2):91-110, 2004.10.1023/B:VISI.0000029664.99615.94Search in Google Scholar

[76] P. Simard, Y. LeCun, and J.S. Denker. Efficient pattern recognition using a new transformation distance. In S.J. Hanson, J.D. Cowan, and C.L. Giles, editors, Advances in Neural Information Processing Systems 5, pages 50-58. Morgan-Kaufmann, 1993.Search in Google Scholar

[77] T. Hastie, P. Simard, and E. S¨ackinger. Learning prototype models for tangent distance. In G. Tesauro, D.S. Touretzky, and T.K. Leen, editors, Advances in Neural Information Processing Systems 7, pages 999-1006. MIT Press, 1995.Search in Google Scholar

[78] S.J. Pan and Q. Yang. A survey on transfer learning. IEEE Transactions on Knowledge and Data Engineering, 22(10):13-451359, 2010.10.1109/TKDE.2009.191Search in Google Scholar

[79] Y. Bengio, A. Courville, and P. Vincent. Representation learning: A review and new perspectives. IEEE Transactions on Pattern Analysis and Machine Intelligence, 35(8):1798-1828, 2013.Search in Google Scholar

[80] C. Prahm, B. Paassen, A. Schulz, B. Hammer, and O. Aszmann. Transfer learning for rapid recalibration of a myoelectric prosthesis after electrode shift. In J. Ibanez, J. Gonzales-Vargas, J.M. Azorin, M.Akay, and J.L. Pons, editors, Proceedings of the 3rd International Conference on NeuroRehabilitation (ICNR2016), volume 15 of Biosystems and Biorobotics, pages 153-157. Springer, 2016.10.1007/978-3-319-46669-9_28Search in Google Scholar

[81] Y.Tang, Y.Q. Zangh, N.V. Chawla, and S. Krasser. SVMs modeling for highly imbalanced classification. IEEE Transactions on Systems Man and Cybernetics, Part B, 39(1):281-288, 2009.10.1109/TSMCB.2008.200290919068445Search in Google Scholar

[82] T. Fawcett. An introduction to ROC analysis. Pattern Recognition Letters, 27:861-874, 2006.10.1016/j.patrec.2005.10.010Search in Google Scholar

[83] P. Baldi, S. Brunak, Y. Chauvin, and C. Andersen H. Nielsen. Assessing the accuracy of prediction algorithms for classification: an overview. Bioinformatics, 16(5):412-424, 2000.Search in Google Scholar

[84] L. Sachs. Angewandte Statistik. Springer Verlag, 7-th edition, 1992.10.1007/978-3-662-05747-6Search in Google Scholar

[85] C.J. Rijsbergen. Information Retrieval. Butterworths, London, 2nd edition edition, 1979.Search in Google Scholar

[86] M. Kaden, W. Hermann, and T. Villmann. Optimization of general statistical accuracy measures for classification based on learning vector quantization. In M. Verleysen, editor, Proc. of European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning (ESANN’2014), pages 47-52, Louvain-La-Neuve, Belgium, 2014. i6doc.com.Search in Google Scholar

[87] A.P. Bradley. The use of the area under the ROC curve in the evaluation of machine learning algorithms. Pattern Recognition, 30(7):1149-1155, 1997.10.1016/S0031-3203(96)00142-2Search in Google Scholar

[88] J. Keilwagen, I. Grosse, and J. Grau. Area under precision-recall curves for weighted and unweighted data. PLOS|ONE, 9(3 / e92209):1-13, 2014.10.1371/journal.pone.0092209Search in Google Scholar

[89] S. Vanderlooy and E. H¨ullermeier. A critical analysis of variants of the AUC. Machine Learning, 72:247-262, 2008.10.1007/s10994-008-5070-xSearch in Google Scholar

[90] T. Villmann, M. Kaden, W. Hermann, and M. Biehl. Learning vector quantization classifiers for ROC-optimization. Computational Statistics, 2016.10.1007/s00180-016-0678-ySearch in Google Scholar

[91] J.A. Hanley and B.J. McNeil. The meaning and use of the area under a receiver operating characteristic. Radiology, 143:29-36, 1982.10.1148/radiology.143.1.7063747Search in Google Scholar

[92] U. Brefeld and T. Scheffer. AUC maximizing support vector learning. In Proceedings of ICML 2005 workshop on ROC Analysis in Machine Learning, pages 377-384, 2005.10.1145/1015330.1015350Search in Google Scholar

[93] T. Calders and S. Jaroszewicz. Efficient AUC optimization for classification. In J.N. Kok, J. Koronacki, R. Lopez de Mantaras, S. Matwin, D. Mladenic, and A. Skowron, editors, Knowledge Discovery in Databases: PKDD 2007, volume 4702 of LNCS, pages 42-53. Springer-Verlag, 2007.10.1007/978-3-540-74976-9_8Search in Google Scholar

[94] M. Biehl, M. Kaden, P. St¨urmer, and T. Villmann. ROC-optimization and statistical quality measures in learning vector quantization classifiers. Machine Learning Reports, 8(MLR-01-2014):23-34, 2014. ISSN:1865-3960, http://www.techfak.unibielefeld.de/˜fschleif/mlr/mlr012014.pdf. Search in Google Scholar

[95] R. Senge, S. Bösner, Dembczyński K, J. Haasenritter, O. Hirsch, N. Donner-Banzhoff, and E. H¨ullermeier. Reliable classification: Learning classifiers that distinguish aleatoric and epistemic uncertainty. Information Sciences, 255:16-29, 2014.Search in Google Scholar

[96] A. Vailaya and A.K. Jain. Reject option for VQbased Bayesian classification. In International Conference on Pattern Recognition (ICPR), pages 2048-2051, 2000.Search in Google Scholar

[97] L. Fischer, B. Hammer, and H. Wersing. Efficient rejection strategies for prototype-based classification. Neurocomputing, 169:334-342, 2015.10.1016/j.neucom.2014.10.092Search in Google Scholar

[98] G. Fumera, F. Roli, and G. Giacinto. Reject option with multiple thresholds. Pattern Recognition, 33(12):2099-2101, 2000.10.1016/S0031-3203(00)00059-5Search in Google Scholar

[99] I. Pillai, G. Fumera, and F. Roli. Multi-label classification with a reject option. Pattern Recognition, 46:2256-2266, 2013.10.1016/j.patcog.2013.01.035Search in Google Scholar

[100] R. Herbei and M.H. Wegkamp. Classification with reject option. The Canadian Journal of Statistics, 34(4):709-721, 2006.10.1002/cjs.5550340410Search in Google Scholar

[101] P. L. Bartlett and M.H. Wegkamp. Classification with a reject option using a hinge loss. Journal of Machine Learning Research, 9:1823-1840, 2008.Search in Google Scholar

[102] M. Yuan and M.H. Wegkamp. Classification methods with reject option based on convex risk minimization. Journal of Machine Learning Research, 11:111-130, 2010.Search in Google Scholar

[103] L.P. Cordella, C. deStefano, C. Sansone, and M. Vento. An adaptive reject option for LVQ classifiers. In C. Braccini, L. deFloriani, and G. Vernazza, editors, Proceedings of the International Conference on Image Analysis and Processing (ICIAP), San Remo, volume 974 of LNCS, pages 68-73, Berlin, 1995. Springer.10.1007/3-540-60298-4_238Search in Google Scholar

[104] J. Suutala, S. Pirttikangas, J. Riekki, and J. R¨oning. Reject-optional LVQ-based two-level classifier to improve reliability in footstep identification. In A. Ferscher and F. Mattern, editors, Pervasive Computing, Proccedings on the Second International Conference PERVASIVE, Vienna, volume 3001 of LNCS, pages 182-187. Springer, 2004.10.1007/978-3-540-24646-6_12Search in Google Scholar

[105] G. Fumera and F. Roli. Support vector machines with embedded reject option. In S.-W. Lee and A. Verri, editors, Proceeedings of the First Interantional Workshop on Pattern Recognition with Support Vector Machines, Niagara Falls, volume 2388 of LNCS, pages 68-82. Springer, 2002.10.1007/3-540-45665-1_6Search in Google Scholar

[106] C.K. Chow. On optimum recognition error and reject tradeoff. IEEE Transactions in Information Theory, 16(1):41-46, 1970.10.1109/TIT.1970.1054406Search in Google Scholar

[107] C.K. Chow. An optimum character recognition system using decision functions. IRE Transactions on Electronic Computers, EC-6:247-254, 1957.10.1109/TEC.1957.5222035Search in Google Scholar

[108] T. Villmann, M. Kaden, D. Nebel, and M. Biehl. Learning vector quantization with adaptive costbased outlier-rejection. In G. Azzopardi and N. Petkov, editors, Proceedings of 16th International Conference on Computer Analysis of Images and Pattern, CAIP 2015, Valetta - Malta, volume Part II of LNCS 9257, pages 772 - 782, Berlin-Heidelberg, 2015. Springer.10.1007/978-3-319-23117-4_66Search in Google Scholar

[109] T. Villmann, M. Kaden, A. Bohnsack, S. Saralajew, J.-M. Villmann, T. Drogies, and B. Hammer. Self-adjusting reject options in prototype based classification. In E. Merényi, M.J. Mendenhall, and P. O’Driscoll, editors, Advances in Self-Organizing Maps and Learning Vector Quantization: Proceedings of 11th International Workshop WSOM 2016, volume 428 of Advances in Intelligent Systems and Computing, pages 269-279, Berlin-Heidelberg, 2016. Springer.10.1007/978-3-319-28518-4_24Search in Google Scholar

[110] L. Fischer and T. Villmann. A probabilistic classifier model with adaptive rejection option. Machine Learning Reports, 10(MLR-01-2016):1-16, 2016. ISSN:1865-3960, http://www.techfak.unibielefeld.de/˜fschleif/mlr/mlr012016.pdf.Search in Google Scholar

[111] V. Vovk, A. Gammerman, and G. Shafer. Algorithmic learning in a random world. Springer, Berlin, 2005.Search in Google Scholar

[112] X. Zhu, F.-M. Schleif, and B. Hammer. Adaptive conformal semi-supervised vector quantization for dissimilarity data. Pattern Recognition Letters, 49:138-145, 2014.10.1016/j.patrec.2014.07.009Search in Google Scholar

[113] D. Erhan, Y. Bengio, A. Courville, P.-A. Manzagol, and P. Vincent. Why does unsupervised pretraining help deep learning. Journal of Machine Learning Research, 11:625-660, 2010.Search in Google Scholar

[114] D. Ciresan, U. Meier, J. Masci, and J. Schmidhuber. Multi-column deep neural network for traffic sign classification. Neural Networks, 32:333-338, 2012.10.1016/j.neunet.2012.02.02322386783Search in Google Scholar

[115] Helge Ritter, Thomas Martinetz, and Klaus Schulten. Neural Computation and Self-Organizing Maps: An Introduction. Addison-Wesley, Reading, MA, 1992. Search in Google Scholar

eISSN:
2083-2567
Langue:
Anglais
Périodicité:
4 fois par an
Sujets de la revue:
Computer Sciences, Artificial Intelligence, Databases and Data Mining