Accès libre

Perspectives of Hydrogen Production from Corn Wastes in Poland by Means of Dark Fermentation

À propos de cet article

Citez

[1] Urbaniec K, Grabarczyk R. Hydrogen production from sugar beet molasses - A techno-economic study. J Clean Prod. 2014;65:324-329. DOI: 10.1016/j.jclepro.2013.08.027.10.1016/j.jclepro.2013.08.027Open DOISearch in Google Scholar

[2] Narasu ML, Urbaniec K. International conference on advances in biological hydrogen production and applications ICABHPA 2012. J Clean Prod. 2013;52:11-13. DOI: 10.1016/j.jclepro.2013.02.008.10.1016/j.jclepro.2013.02.008Open DOISearch in Google Scholar

[3] Urbaniec K, Grabarczyk R. Kierunki badań nad wykorzystaniem biomasy do otrzymywania wodoru. (Directions of studies on the use of biomass for production of hydrogen) Przem Chem. 2005;11:836-838. https://repo.pw.edu.pl/docstore/download/WUT356ca3b92b8e4e6e8c63fe93fa0d10fe/AzCz_2.pdf.Search in Google Scholar

[4] Urbaniec K, Grabarczyk R. Raw materials for fermentative hydrogen production. J Clean Prod. 2009;17:959-962. DOI: 10.1016/j.jclepro.2009.02.008.10.1016/j.jclepro.2009.02.008Open DOISearch in Google Scholar

[5] Panagiotopoulos JA, Bakker RR, De Vrije T, Urbaniec K, Koukios EG, Claassen PAM. Prospects of utilization of sugar beet carbohydrates for biological hydrogen production in the EU. J Clean Prod. 2010;18:S9-S14. DOI: 10.1016/j.jclepro.2010.02.025.10.1016/j.jclepro.2010.02.025Open DOISearch in Google Scholar

[6] Kapdan IK, Kargi F. Bio-hydrogen production from waste materials. Enzyme Microb Technol. 2006;38:569-582. DOI: 10.1016/j.enzmictec.2005.09.015.10.1016/j.enzmictec.2005.09.015Open DOISearch in Google Scholar

[7] Panagiotopoulos IA, Bakker RR, De Vrije T, Koukios EG, Claassen PAM. Pretreatment of sweet sorghum bagasse for hydrogen production by Caldicellulosiruptor saccharolyticus. Int J Hydrogen Energy. 2010;35:7738-7747. DOI: 10.1016/j.ijhydene.2010.05.075.10.1016/j.ijhydene.2010.05.075Open DOISearch in Google Scholar

[8] Panagiotopoulos I, Dakker R, Vrije T, Niel E Van, Koukios E, et al. Exploring critical factors for fermentative hydrogen production from various types of lignocellulosic biomass. J Japan Inst Energy. 2011;90:363-368. DOI: 10.1046/j.1365-2559.2002.14891.x.10.1046/j.1365-2559.2002.14891.x12405952Search in Google Scholar

[9] Panagiotopoulos IA, Karaoglanoglou LS, Koullas DP, Bakker RR, Claassen PAM, Koukios EG. Technical suitability mapping of feedstocks for biological hydrogen production. J Clean Prod. 2014;102:521-528. DOI: 10.1016/j.jclepro.2015.04.055.10.1016/j.jclepro.2015.04.055Open DOISearch in Google Scholar

[10] Hsu CW, Lin CY. Commercialization model of hydrogen production technology in Taiwan: Dark fermentation technology applications. Int J Hydrogen Energy. 2016;41:4489-4497. DOI: 10.1016/j.ijhydene.2015.07.080.10.1016/j.ijhydene.2015.07.080Search in Google Scholar

[11] Nasr N, Hafez H, El Naggar MH, Nakhla G. Application of artificial neural networks for modeling of biohydrogen production. Int J Hydrogen Energy. 2013;38:3189-3195. DOI: 10.1016/j.ijhydene.2012.12.109.10.1016/j.ijhydene.2012.12.109Open DOISearch in Google Scholar

[12] Sierra R, Garcia LA, Holtzapple MT. Selectivity and delignification kinetics for oxidative short-term lime pretreatment of poplar wood, part I: Constant-pressure. Biotechnol Prog. 2011;27:976-985. DOI: 10.1002/btpr.590.10.1002/btpr.59021692196Open DOISearch in Google Scholar

[13] Sangian HF, Sehe MR, Tamuntuan G, Zulnazri Z. Utilization of saline solutions in the modification of lignocellulose utilization of saline solutions in the modification of lignocellulose from Champaca wood. J Korean Wood Sci Technol. 2018;46:368-379. DOI: 10.5658/WOOD.2018.46.4.368.10.5658/.2018.46.4.368Open DOISearch in Google Scholar

[14] Taufiq-Yap YH, Wong P, Marliza TS, Nurul Suziana NM, Tang LH, Sivasangar S. Hydrogen production from wood gasification promoted by waste eggshell catalyst. Int J Energy Res. 2013;37:1866-1871. DOI: 10.1002/er.3003.10.1002/er.3003Open DOISearch in Google Scholar

[15] Perera KRJ, Arudchelvam Y, Gadhamshetty V, Nirmalakhandan N. Modeling and simulation of net energy gain by dark fermentation. Int J Hydrogen Energy. 2012;37:2267-2272. DOI: 10.1016/j.ijhydene.2011.10.059.10.1016/j.ijhydene.2011.10.059Open DOISearch in Google Scholar

[16] Trad Z, Fontaine JP, Larroche C, Vial C. Multiscale mixing analysis and modeling of biohydrogen production by dark fermentation. Renew Energy. 2016;98:264-282. DOI: 10.1016/j.renene.2016.03.094.10.1016/j.renene.2016.03.094Open DOISearch in Google Scholar

[17] Singh V, Das D. Potential of Hydrogen-Production from Biomass. Science and Engineering of Hydrogen-Based Energy Technologies. Elsevier Inc.; 2018. DOI: 10.1016/b978-0-12-814251-6.00003-4.10.1016/B978-0-12-814251-6.00003-4Open DOISearch in Google Scholar

[18] Chezeau B, Vial C. Modeling and Simulation of the Biohydrogen Production Processes. Elsevier B.V; 2019. DOI: 10.1016/b978-0-444-64203-5.00019-8.10.1016/B978-0-444-64203-5.00019-8Open DOISearch in Google Scholar

[19] Ghimire A, Frunzo L, Pirozzi F, Trably E, Escudie R, Lens PNL, et al. A review on dark fermentative biohydrogen production from organic biomass: Process parameters and use of by-products. Appl Energy. 2015;144:73-95. DOI: 10.1016/j.apenergy.2015.01.045.10.1016/j.apenergy.2015.01.045Open DOISearch in Google Scholar

[20] Kaparaju P, Serrano M, Thomsen AB, Kongjan P, Angelidaki I. Bioethanol, biohydrogen and biogas production from wheat straw in a biorefinery concept. Bioresour Technol. 2009;100:2562-2568. DOI: 10.1016/j.biortech.2008.11.011.10.1016/j.biortech.2008.11.01119135361Open DOISearch in Google Scholar

[21] Panagiotopoulos IA, Bakker RR, Budde MAW, de Vrije T, Claassen PAM, Koukios EG. Fermentative hydrogen production from pretreated biomass: A comparative study. Bioresour Technol. 2009;100:6331-6338. DOI: 10.1016/j.biortech.2009.07.011.10.1016/j.biortech.2009.07.01119656677Open DOISearch in Google Scholar

[22] Tsapekos P, Kougias PG, Angelidaki I. Mechanical pretreatment for increased biogas production from lignocellulosic biomass; predicting the methane yield from structural plant components. Waste Manage. 2018;78:903-910. DOI: 10.1016/j.wasman.2018.07.017.10.1016/j.wasman.2018.07.01732559985Open DOISearch in Google Scholar

[23] Wu J, Ein-Mozaffari F, Upreti S. Effect of ozone pretreatment on hydrogen production from barley straw. Bioresour Technol. 2013;144:344-349. DOI: 10.1016/j.biortech.2013.07.001.10.1016/j.biortech.2013.07.00123891834Open DOISearch in Google Scholar

[24] Li Q, Guo C, Liu CZ. Dynamic microwave-assisted alkali pretreatment of cornstalk to enhance hydrogen production via co-culture fermentation of Clostridium thermocellum and Clostridium thermosaccharolyticum. Biomass Bioenergy. 2014;64:220-229. DOI: 10.1016/j.biombioe.2014.03.053.10.1016/j.biombioe.2014.03.053Open DOISearch in Google Scholar

[25] Nasirian N, Almassi M. Optimization of biological hydrogen production process using stepwise regression method. Int J Biosci. 2014;6655:289-299. DOI: 10.12692/ijb/4.2.289-299.10.12692/ijb/4.2.289-299Open DOISearch in Google Scholar

[26] Bartacek J, Zabranska J, Lens PNL. Developments and constraints in fermentative hydrogen production. Biofuels, Bioprod Biorefining. 2007;1:201-214. DOI: 10.1002/bbb.17.10.1002/bbb.17Open DOISearch in Google Scholar

[27] Pradhan N, Dipasquale L, D’Ippolito G, Fontana A, Panico A, Lens PNL, et al. Kinetic modeling of fermentative hydrogen production by Thermotoga neapolitana. Int J Hydrogen Energy. 2016;41:4931-4940. DOI: 10.1016/j.ijhydene.2016.01.107.10.1016/j.ijhydene.2016.01.107Open DOISearch in Google Scholar

[28] Agencja Rynku Rolnego. Rynek zbóż w Polsce (Corn Market in Poland). Warszawa: 2013. www.arr.gov.pl/data/00321/rynek_zboz_2013_pl.pdf.Search in Google Scholar

[29] Sołowski G. Theoretical potential of hydrogen production from textiles wastes in Pomeranian region by means of dark fermentation. In: Noch T, Mikołajczewska W, Wesołowska A, editors. Globalizacja a regionalna ochrona środowiska, Gdańsk: Wydawnictwo Gdańskiej Szkoły Wyższej; 2016. 313-317. https://mostwiedzy.pl/pl/publication/theoretical-potential-of-hydrogen-production-from-textiles-wastes-in-pomeranian-region-by-means-of-d,138189-1.Search in Google Scholar

[30] Sołowski G. Hydrogen production from wood waste by mean of dark fermentation. In: Pikoń K, Czarnowska L, editors. Contemporary Problems of Power Engineering and Environmental Protection 2016. Gliwice: Published by Department of Technologies and Installations for Waste Management; 2016. 189-194. http://cleanalternative.eu/wp-content/uploads/2018/01/Merged_OSWE_book.pdf.Search in Google Scholar

[31] Collins SR, Wellner N, Martinez Bordonado I, Harper AL, Miller CN, Bancroft I, et al. Variation in the chemical composition of wheat straw: the role of tissue ratio and composition. Biotechnol Biofuels. 2014;7:121. DOI: 10.1186/s13068-014-0121-y.10.1186/s13068-014-0121-y424377825426162Open DOISearch in Google Scholar

[32] Kongjan P, Angelidaki I. Extreme thermophilic biohydrogen production from wheat straw hydrolysate using mixed culture fermentation: Effect of reactor configuration. Bioresour Technol. 2010;101:7789-7796. DOI: doi.org/10.1016/j.biortech.2010.05.024.10.1016/j.biortech.2010.05.02420554199Open DOISearch in Google Scholar

[33] Cantero DA, Bermejo DM, Cocero JM. Reaction engineering for process intensification of supercritical water biomass refining. J Supercrit Fluids. 2015;96:21-35. DOI: 10.1016/j.supflu.2014.07.003.10.1016/j.supflu.2014.07.003Open DOISearch in Google Scholar

[34] Pronyk C, Mazza G. Fractionation of triticale, wheat, barley, oats, canola, and mustard straws for the production of carbohydrates and lignins. Bioresour Technol. 2012;106:117-124. DOI: 10.1016/j.biortech.2011.11.071.10.1016/j.biortech.2011.11.07122197077Open DOISearch in Google Scholar

[35] Panagiotopoulos IA, Bakker RR, De Vrije T, Claassen PAM, Koukios EG. Dilute-acid pretreatment of barley straw for biological hydrogen production using Caldicellulosiruptor saccharolyticus. Int J Hydrogen Energy. 2012;37:11727-11734. DOI: 10.1016/j.ijhydene.2012.05.124.10.1016/j.ijhydene.2012.05.124Open DOISearch in Google Scholar

[36] Karimi K, Taherzadeh MJ. A critical review on analysis in pretreatment of lignocelluloses: Degree of polymerization, adsorption/desorption, and accessibility. Bioresour Technol. 2016;203:348-356. DOI: 10.1016/j.biortech.2015.12.035.10.1016/j.biortech.2015.12.03526778166Open DOISearch in Google Scholar

[37] Merali Z, Ho JD, Collins SRA, Gall G Le, Elliston A, Käsper A, et al. Characterization of cell wall components of wheat straw following hydrothermal pretreatment and fractionation. Bioresour Technol. 2013;131:226-234. DOI: 10.1016/j.biortech.2012.12.023.10.1016/j.biortech.2012.12.02323347931Open DOISearch in Google Scholar

[38] Sołowski G, Shalaby MS, Abdallah H, Shaban AM, Cenian A. Production of hydrogen from biomass and its separation using membrane technology. Renew Sustain Energy Rev. 2017;82:3152-3167. DOI: 10.1016/j.rser.2017.10.027.10.1016/j.rser.2017.10.027Open DOISearch in Google Scholar

[39] Kozłowski K, Lewicki A, Malińska K, Wei Q. Current state, challenges and perspectives of biological production of hydrogen in dark fermentation process in Poland. J Ecol Eng. 2019;20:146-160. DOI: 10.12911/22998993/97270.10.12911/22998993/97270Open DOISearch in Google Scholar

[40] Nagasawa K, Davidson FT, Lloyd AC, Webber ME. Impacts of renewable hydrogen production from wind energy in electricity markets on potential hydrogen demand for light-duty vehicles. Appl Energy. 2019;235:1001-1016. DOI: 10.1016/j.apenergy.2018.10.067.10.1016/j.apenergy.2018.10.067Search in Google Scholar

[41] Blanco H, Nijs W, Ruf J, Faaij A. Potential for hydrogen and power-to-liquid in a low-carbon EU energy system using cost optimization. Appl Energy. 2018;232:617-639. DOI: 10.1016/j.apenergy.2018.09.216.10.1016/j.apenergy.2018.09.216Open DOISearch in Google Scholar

eISSN:
1898-6196
Langue:
Anglais