Accès libre

Bacterial Nanocellulose as a Microbiological Derived Nanomaterial

À propos de cet article

Citez

1. Hansen N.: Hall–Petch relation and boundary strengthening, Scripta Materialia, 51 8 (2004) 801–806.Search in Google Scholar

2. Świątek-Prokop J.: Theses Academy. Jan Dlugosz in Czestochowa, series: Technical Education and Informatics. 2012 z. VII, http://www.pneti.ajd.czest.pl/docs/tom7/art/js_a.pdfSearch in Google Scholar

3. Price R.L., Waid M.C., Haberstroh K.M., Webster T.J.: Selective bone cell adhesion on formulations containing carbon nanofibers. Biomaterials 24 (2003) 1877.Search in Google Scholar

4. Grabowska J.: Fulereny – przyszłość zastosowań w medycynie i farmacji, Gazeta Farmaceutyczna 6 (2008) 38.Search in Google Scholar

5. Rupp R., Rosenthal S.L., Stanberry L.R.: VivaGel (SPL7013 Gel): a candidate dendrimer--microbicide for the prevention of HIV and HSV infection., Int. J. Nanomedicine, 2 (2007) 561.Search in Google Scholar

6. Madani S.Y, Tan A., Dwek M., Seifalian A.M.: Functionalization of single-walled carbon nanotubes and their binding to cancer cells. Int. J. Nanomedicine. 7 (2012) 905.Search in Google Scholar

7. Główka E., Sapin-Minet A., Leroy P., Lulek J., Maincent P.: Preparation and in vitro-in vivo evaluation of salmon calcitonin-loaded polymeric nanoparticles. J. Microencapsul. 27 (1) (2010) 25.Search in Google Scholar

8. Wang X., Wei F., Liu A., Wang L., Wang J-C., Ren L., Liu W., Tu Q., Wang L.: Cancer stem cell labeling using poly(l-lysine)-modified iron oxide nanoparticles. Biomaterials. 33 (14) (2012) 3719.Search in Google Scholar

9. Chang Y., Liu Y., Ho J., Hsu S., Lee O.: Amine surface modified superparamagnetic iron oxide nanoparticles interfere with differentiation of human mesenchymal stem cells. J. of Orthopaedic Research. 2 (2012) 1499-506.Search in Google Scholar

10. Jędrzejczyk W., Nanotechnology in medycine, Meritum 2, (2006).Search in Google Scholar

11. Donaldson L.: Nanosystem for effectively targeting glioblastoma: Biomaterials. Materials today, vol.14, 12 (2011) 576.Search in Google Scholar

12. Masaoka S., Ohe T., Sakota N.: Production of cellulose from glucose by Acetobacter xylinum. J. Ferment. Bioeng. 75 (1993) 18–22.10.1016/0922-338X(93)90171-4Search in Google Scholar

13. Park J. K., Jung J. Y., Park Y. H.: Cellulose production by Gluconacetobacter hansenii in a medium containing ethanol. Biotechnol. Lett. 25 (24) (2003) 2055–2059.Search in Google Scholar

14. Keshk S., Sameshima K.: Influence of lignosulfonate on crystal structure and productivity of bacterial cellulose in a static culture. Enzyme and Microbiol. Technology 40 (2006) 4–8.Search in Google Scholar

15. Toda K., Asakura T., Fukaya M., Entani E., Kawamura Y.: Cellulose production by acetic acid-resistant Acetobacter xylinum J. Ferment. Bioeng. 84 (3) (1997) 228–231.Search in Google Scholar

16. Bae S., Shoda M.: Statistical optimization of culture conditions for bacterial cellulose production using Box-Behnken design. Biotechnol. Bioeng. 90 (1) (2005) 20–28.Search in Google Scholar

17. Premjet S., Premjet D., Ohtani Y.: The effect of ingredients of sugar cane molasses on bacterial cellulose production by Acetobacter xylinum ATCC 10245. Sen-I Gakkaishi 63 (8) (2007) 193–199.Search in Google Scholar

18. Kong H. :Invention controls weavers of nanoscale biomaterials, Tech V. November 12 (2008) http://www.vtnews.vt.edu/story.php?relyearSearch in Google Scholar

19. Beck-Candanedo S., Roman M., Gray D. G.: Effect of Reaction Conditions on the Properties and Behavior of Wood Cellulose Nanocrystal Suspensions. Biomacromolecules. 6 (2005) 1048-1054.Search in Google Scholar

20. Klemm D., Philipp B., Heinze T., Heinze U., Wagenknecht W.: Comprehensive Cellulose Chemistry Volume 1and 2. Wiley-VCH [ed]. Germany. (1998).10.1002/3527601937Search in Google Scholar

21. Klemm D., Heublein B., Fink H.P., Bohn A.: Cellulose: Fascinating Biopolymer and Sustainable Raw Material Biopolymers, Angew. Chem. Int. [ed]. 44 3358 (2005).10.1002/anie.20046058715861454Search in Google Scholar

22. Klemm D., Schmauder H. P., Heinze T., Steinbüchel A., Wiley-VCH [ed]. Germany. p. 257. (2002).Search in Google Scholar

23. Hon D. N. S., Shiraishi N.: Wood and Cellulosic Chemistry 2nd. Marcel Dekker Inc. [ed]. New York. (2001).Search in Google Scholar

24. Kamide K.: Cellulose and Cellulose Derivatives. Elsevier. Netherlands (2005).Search in Google Scholar

25. Zugenmaier P.: Crystalline Cellulose and Cellulose Derivatives. Springer-Verlag. Heidelberg (2007).10.1007/978-3-540-73934-0Search in Google Scholar

26. Brown R. M., Saxena I. M.: Cellulose: Molecular and Structural Biology. Springer. Netherlands (2007).10.1007/978-1-4020-5380-1Search in Google Scholar

27. Helenius G., Bäckdahl H., Bodin A., Nanmark U., Gatenholm P., Risberg B.: In vivo biocompatibility of bacterial cellulose. J. Biomed. Mater. Res. A. 76 (2) (2006) 431.10.1002/jbm.a.3057016278860Search in Google Scholar

28. Esguerra M., Fink H., Laschke M. W., Delbro D., Jeppsson A., Gatenholm P., Menger M. G., Risberg B.: Polysaccharides as Cell Carriers for Tissue Engineering: the Use of Cellulose in Vascular Wall Reconstruction. J. Biomed. Mater. Res. Part A. (2009).Search in Google Scholar

29. Yamanaka S., Watanabe K., Kitamura N., Iguchi M., Mitsuhashi S., Nishi Y., Uryu M.: The structure and mechanical properties of sheets prepared from bacterial cellulose. J. Mater. Sci. 24 (1989) 3141.Search in Google Scholar

30. Cannon R. E., Anderson S. M.: Overview of Bacterial Cellulose Production and Application. Critical Reviews in Microbiology 17 (1991) 435.Search in Google Scholar

31. Czaja W., Krystynowicz A., Bielecki S., Brown R. M.: Celuloza bakteryjna jako nanobiomateria. Biomaterials 27 (2006)145.Search in Google Scholar

32. Czaja W. K., Young D. J., Kawecki M., Brown R. M.: The future prospects of microbial cellulose in biomedical applications. Biomacromolecules 8 (2007) 1.Search in Google Scholar

33. Lanyon Y. H., Marrazza G, Tothill IE, Mascini M: Benzene analysis in workplace air using an FIA-based bacterial biosensor. Biosensors and Bioelectronics, 20 (2005) 2089–96.Search in Google Scholar

34. Dourado F., Gama M.: Bacterial Nano Cellulose - innovative Biopolymer in Research and Application. 3rd scientific meeting of the institute for biotechnology and bioengineering. Lisboa. March (2012).Search in Google Scholar

35. Andrade F.K., Pertile R.A.N., Dourado F., Gama F.M.: Bacterial Cellulose: properties, production and applications in Cellulose: Structure and Properties. Derivatives and Industrial Uses. Nova Science Publishers. 18 (2010) 427-458.Search in Google Scholar

36. Nogi M., Yano H.: Transparent nanocomposites based on cellulose produced by bacteria offer potential innovation in the electronics device industry. Adv. Mater. 20 (2009) 1849.Search in Google Scholar

37. Klemm D., Schumann D., Kramer F., Heßler N., Hornig M., Schmauder H. P., Marsch S., Nanocelluloses as Innovative Polymers in Research and Application. Adv. Polym. Sci. 205 (2006) 49.Search in Google Scholar

38. Grande C.J., Torres F.G., Gomez C.M., Troncoso O.P, Canet-Ferrer J., Martinez-Pastor J.: Morphological characterisation of bacterial Cellulose-Starch nanocomposites. Polym. Composites. 16 (2008) 181–185.Search in Google Scholar

39. Bäckdahl H., Helenius G., Bodin A., Johansson B., Nanmark U., Risberg B., Gatenholm P., Bacterial Cellulose as Potential Scaffold for Tissue Engineered Blood Vessels: Mechanical Properties and Cell Interactions. Biomaterials 27 (2006) 2141.Search in Google Scholar

40. Yano H., Sugiyama J., Nakagaito A.N., Nogi M., Matsura T., Hikita H., Handa K., Optically Transparent Composites Reinforced with Networks of Bacterial Nanofibers. Adv. Mater. 17 (2005) 153.Search in Google Scholar

41. Gatenholm P., Klemm D.: Bacterial nanocellulose as a renewable material for biomedical Applications. mrs bulletin. (2010) 35.10.1557/mrs2010.653Search in Google Scholar

42. Ramana K. V., Singh L.: Effect of various carbon and nitrogen sources on cellulose synthesis by Acetobacter xylinum. World J. Microbiol. Biotechnol. 16 (3) (2000) 245–248.Search in Google Scholar

43. Bacterial Cellulose. October 29. 2010. http://www.warsawvoice.pl. date of download: (2012).Search in Google Scholar

44. Majda B., Bowil Biotech, www.biotechnologia.pl. date of download: (2012).Search in Google Scholar

45. Bielecki S., Kalinowska H.: Biotechnology nanomaterials. Post. Mikrobiologii, 47 (2008) 163-169.Search in Google Scholar

46. Dinand E., Chanzy H., Vignon M. R.: Parenchymal cell cellulose from sugar beet pulp: preparation and properties. Cellulose. 3 (1996) 183-188.Search in Google Scholar

47. Bijak M.: Sztuczna zastawka serca, www.echirurgia.pl. date of download: (2016).Search in Google Scholar

48. Avery N. C., Sims T. J., Warkup C., Bailey A. J.: Collagen cross-linking in porcine m. longissimus lumborum: absence of a relationship with variation in texture at pork weight. Meat Sci. 42 (1996) 355-369.Search in Google Scholar

49. Dinand E., Vignon M. R.: Isolation and NMR characterization of a (4-O-methyl-D-glucurono)-D-xylan from sugar beet pulp. Carbohydr. Res. 330 (2001) 285-288.Search in Google Scholar

50. Shah J., Brown M. R. J. R.: Towards electronic paper. Appl. Microbiol. Biotechnol. 66 (2005) 352-355.10.1007/s00253-004-1756-615538556Search in Google Scholar

51. Ślęzak A., Kucharzewski M., Jasik-Ślęzak J.: The characteristics of medical dressings bacterial cellulose membrane. Department of Biology and Biophysics, University of Czestochowa. Department of General Surgery, Medical University of Silesia in Bytom. http://www.dbc.wroc.pl/Content/2112/202_Slez.pdf. date of download: (2016).Search in Google Scholar

52. Baptista A., Ferreira I., Borges J.: Cellulose-Based Bioelectronic Devices. http://dx.doi.org/10.5772/56721. date of download: (2016).10.5772/56721Search in Google Scholar

53. Finkenstadt V. L.: Natural polysaccharides as electroactive polymers. Appl. Microbiol. Biotechnol. 67 (2005) 735-745.Search in Google Scholar

54. Xiank Q., Kim J. S., Lee Y. Y.: A comprehensive kinetic model for di lute-acid hydrolyssys of cellulose, App. Biochem. Biotechnol. 105-108 (2003) 337-357.Search in Google Scholar

55. Ogawa R., Tokura S.: Preparation of bacterial cellulose containing N-acetylglucosamine residues. Carbohydr. Polym. 19 (1992) 171-178.Search in Google Scholar

eISSN:
2083-4799
Langue:
Anglais
Périodicité:
4 fois par an
Sujets de la revue:
Materials Sciences, Functional and Smart Materials