Acceso abierto

Impedance cardiography: Pulsatile blood flow and the biophysical and electrodynamic basis for the stroke volume equations


Cite

Yamakoshi K, Togawa T, Ito H. Evaluation of the theory of cardiac-output computation from transthoracic impedance plethysmogram. Med Biol Eng Comput 1977;15:479–88.10.1007/BF02442275199803YamakoshiKTogawaTItoHEvaluation of the theory of cardiac-output computation from transthoracic impedance plethysmogramMed Biol Eng Comput19771547988199803Open DOISearch in Google Scholar

Bernstein DP. Pressure pulse contour-derived stroke volume and cardiac output in the morbidly obese patient. Obes Surg 2008;18:1015–21.1844389210.1007/s11695-007-9378-6BernsteinDPPressure pulse contour-derived stroke volume and cardiac output in the morbidly obese patientObes Surg20081810152118443892Search in Google Scholar

Quick CM, Berger DS, Noordergraaf A. Apparent arterial compliance. Am J. Physiol (Heart Circ Physiol 43) 1998;274:H1393–1403.10.1152/ajpheart.1998.274.4.H1393QuickCMBergerDSNoordergraafAApparent arterial complianceAm J. Physiol (Heart Circ Physiol 43)1998274H139314039575945Open DOISearch in Google Scholar

Fogliardo R, Di Donfrancesco M, Burattini R. Comparison of linear and nonlinear formulations of the three-element winkdessel model. Am J Physiol (Heart Circ Physiol 40) 1996;271:H2661–68.10.1152/ajpheart.1996.271.6.H2661FogliardoRDi DonfrancescoMBurattiniRComparison of linear and nonlinear formulations of the three-element winkdessel modelAm J Physiol (Heart Circ Physiol 40)1996271H2661688997329Open DOISearch in Google Scholar

Chemla D, Hebert J-L, Coirault C, et al. Total arterial compliance estimated by stroke volume-to-aortic pulse pressure ratio in humans. Am J Physiol (Heart Circ Physiol 43)1998;274:H500–05.10.1152/ajpheart.1998.274.2.H500ChemlaDHebertJ-LCoiraultCTotal arterial compliance estimated by stroke volume-to-aortic pulse pressure ratio in humansAm J Physiol (Heart Circ Physiol 43)1998274H500059486253Open DOISearch in Google Scholar

Olufsen MS, Ottesen JT, Tran HT, et al. Blood pressure and blood flow variation during postural change from sitting to standing: model development and validation. J Appl Physiol 2005;99:1523–37.1586068710.1152/japplphysiol.00177.2005OlufsenMSOttesenJTTranHTBlood pressure and blood flow variation during postural change from sitting to standing: model development and validationJ Appl Physiol200599152337209403915860687Search in Google Scholar

Moshkovitz Y, Kaluski E, Milo O, et al. Recent developments in cardiac output determination by bioimpedance: comparison with invasive cardiac output and potential cardiovascular applications. Curr Opin Cardiol 2004;19:229–37.10.1097/00001573-200405000-0000815096956MoshkovitzYKaluskiEMiloORecent developments in cardiac output determination by bioimpedance: comparison with invasive cardiac output and potential cardiovascular applicationsCurr Opin Cardiol2004192293715096956Open DOISearch in Google Scholar

Summers RL, Shoemaker WC, Peacock DF, et al. Bench to bedside: electrophysiologic and clinical principles of noninvasive hemodynamic monitoring using impedance cardiography. Acad Emerg Med 2003;10:669–80.10.1111/j.1553-2712.2003.tb00054.x12782531SummersRLShoemakerWCPeacockDFBench to bedside: electrophysiologic and clinical principles of noninvasive hemodynamic monitoring using impedance cardiographyAcad Emerg Med2003106698012782531Open DOISearch in Google Scholar

Newman DG, Callister R. The non-invasive assessment of stroke volume and cardiac output by impedance cardiography: a review. Aviat Space Environ Med. 1999;70:780–9.10447052NewmanDGCallisterRThe non-invasive assessment of stroke volume and cardiac output by impedance cardiography: a reviewAviat Space Environ Med1999707809Search in Google Scholar

Woltjer HH, Bogaard HJ, deVries PM. The technique of impedance cardiography. Eur Heart J 1997;18:1396–403.945844410.1093/oxfordjournals.eurheartj.a015464WoltjerHHBogaardHJdeVriesPMThe technique of impedance cardiographyEur Heart J19971813964039458444Search in Google Scholar

Kauppinen PK, Hyttinen JA, Malmivuo JA. Senstitivity distributions of impedance cardiography using band and spot electrodes analyzed by a three-dimensional computer model. Ann Biomed Eng 1998;26:694–702.10.1114/1.44KauppinenPKHyttinenJAMalmivuoJASenstitivity distributions of impedance cardiography using band and spot electrodes analyzed by a three-dimensional computer modelAnn Biomed Eng1998266947029662161Open DOISearch in Google Scholar

Raaijmakers E, Faes TJ, Scholten RJ, et al. A meta-analysis of three decades of validating thoracic impedance cardiography. Crit Care Med 1999;27:1203–13.1039723010.1097/00003246-199906000-00053RaaijmakersEFaesTJScholtenRJA meta-analysis of three decades of validating thoracic impedance cardiographyCrit Care Med19992712031310397230Search in Google Scholar

Bernstein DP. Impedance cardiography: development of the stroke volume equations and their electrodynamic and biophysical foundations. In: Leondes CT, editor. Biomechanical systems technology: cardiovascular systems. Singapore: World Scientific; 2007. p. 49–87.BernsteinDPImpedance cardiography: development of the stroke volume equations and their electrodynamic and biophysical foundationsLeondesCTeditorBiomechanical systems technology: cardiovascular systemsSingaporeWorld Scientific200749–8710.1142/9789812771377_0003Search in Google Scholar

Visser KR, Lamberts R, Zijlstra WG. Investigation of the origin of the impedance cardiogram by means of exchange transfusion with stroma free haemoglobin solution in the dog. Cardiovasc Res 1990;24:24–32.10.1093/cvr/24.1.242328511VisserKRLambertsRZijlstraWGInvestigation of the origin of the impedance cardiogram by means of exchange transfusion with stroma free haemoglobin solution in the dogCardiovasc Res19902424322328511Open DOISearch in Google Scholar

Visser KR, Lamberts R, Zijlstra WG. Investigation of the parallel conductor model of impedance cardiography by means of exchange transfusion with stroma free haemoglobin solution. Cardiovasc Res 1987;21:637–45.10.1093/cvr/21.9.6373446367VisserKRLambertsRZijlstraWGInvestigation of the parallel conductor model of impedance cardiography by means of exchange transfusion with stroma free haemoglobin solutionCardiovasc Res198721637453446367Open DOISearch in Google Scholar

Wang L, Patterson R. Multiple sources of the impedance cardiogram based on 3-D finite difference human thorax models. IEEE Trans Biomed Eng 1995;42:141–8.10.1109/10.3418267868141WangLPattersonRMultiple sources of the impedance cardiogram based on 3-D finite difference human thorax modelsIEEE Trans Biomed Eng19954214187868141Open DOISearch in Google Scholar

Geddes LA, Sadler C. The specific resistance of blood at body temperature. Med Biol Eng Comput 1973;11:1973.GeddesLASadlerCThe specific resistance of blood at body temperatureMed Biol Eng Comput197311197310.1007/BF024755434746389Search in Google Scholar

Sakamoto K, Kanai H. Electrical characteristics of flowing blood. IEEE Trans Biomed Eng 1979;26:686–95.544441SakamotoKKanaiHElectrical characteristics of flowing bloodIEEE Trans Biomed Eng1979266869510.1109/TBME.1979.326459544441Search in Google Scholar

Visser KR. Electrical properties of flowing blood and impedance cardiography. Ann Biomed Eng. 1989;17:463–73.10.1007/BF02368066VisserKRElectrical properties of flowing blood and impedance cardiographyAnn Biomed Eng198917463732610418Open DOISearch in Google Scholar

Kosicki J, Chen LH, Hobbie R, et al. Contributions to the impedance cardiogram waveform. Ann Biomed Eng 1986;14:67–80.10.1007/BF023646493706856KosickiJChenLHHobbieRContributions to the impedance cardiogram waveformAnn Biomed Eng19861467803706856Open DOISearch in Google Scholar

Ravi Shankar TM, Webster JG, Shao SY. The contribution of vessel volume change and blood resistivity change to the electrical impedance pulse. IEEE Trans Biomed Eng 1985;32:192–98.3997176Ravi ShankarTMWebsterJGShaoSYThe contribution of vessel volume change and blood resistivity change to the electrical impedance pulseIEEE Trans Biomed Eng1985321929810.1109/TBME.1985.3255283997176Search in Google Scholar

Hoetink AE, Faes TJ, Visser KR et al. On the flow dependency of the electrical conductivity of blood. IEEE Trans Biomed Eng 2004;51:1251–61.10.1109/TBME.2004.82726315248541HoetinkAEFaesTJVisserKROn the flow dependency of the electrical conductivity of bloodIEEE Trans Biomed Eng20045112516115248541Open DOISearch in Google Scholar

Gaw RL, Cornish BH, Thomas BJ. The electrical impedance of pulsatile blood flowing through rigid tubes: a theoretical investigation. IEEE Trans Biomed Eng 2008;55:721–27.1827000910.1109/TBME.2007.903531GawRLCornishBHThomasBJThe electrical impedance of pulsatile blood flowing through rigid tubes: a theoretical investigationIEEE Trans Biomed Eng2008557212718270009Search in Google Scholar

Saito Y, Goto T, Terasaki H, et al. The effects of pulmonary circulation pulsatility on the impedance cardiogram. Arch Int Physiol Biochim 1983;91:339–44.6202263SaitoYGotoTTerasakiHThe effects of pulmonary circulation pulsatility on the impedance cardiogramArch Int Physiol Biochim1983913394410.3109/138134583090679796202263Search in Google Scholar

Ito H, Yamakoshi KI, Yamada A. Physiological and fluid-dynamic investigations of the transthoracic impedance plethysmography method for measuring cardiac output. Part II-Analysis of the transthoracic impedance wave by perfusing dogs. Med Biol Eng Comput 1976;14:373–8.10.1007/BF02476113ItoHYamakoshiKIYamadaAPhysiological and fluid-dynamic investigations of the transthoracic impedance plethysmography method for measuring cardiac output. Part II-Analysis of the transthoracic impedance wave by perfusing dogsMed Biol Eng Comput1976143738967172Open DOISearch in Google Scholar

Yamakoshi KI, Ito H, Yamada A, et al. Physiological and fluid-dynamic investigations of the transthoracic impedance plethysmography method for measuring cardiac output: Part 1-A fluid-dynamic approach using an expansible tube model. Med Biol Eng Comput 1976;14:365–72.10.1007/BF02476112YamakoshiKIItoHYamadaAPhysiological and fluid-dynamic investigations of the transthoracic impedance plethysmography method for measuring cardiac output: Part 1-A fluid-dynamic approach using an expansible tube modelMed Biol Eng Comput19761436572967171Open DOISearch in Google Scholar

Nyboer J. Electrical impedance plethysmogrphy; a physical and physiologic approach to peripheral vascular study. Circulation 1950;2:811–21.10.1161/01.CIR.2.6.81114783833NyboerJElectrical impedance plethysmogrphy; a physical and physiologic approach to peripheral vascular studyCirculation1950281121Open DOISearch in Google Scholar

Lamberts R, Visser KR, Zijlstra WG. Impedance Cardiography. Assen, The Netherlands, Van Gorcum; 1984.LambertsRVisserKRZijlstraWGImpedance CardiographyAssen, The Netherlands, Van Gorcum1984Search in Google Scholar

Kubicek WG, Karnegis JN, Patterson RP et al. Development and evaluation of an impedance cardiac output system. Aerosp Med 1966;37:1208–12.5339656KubicekWGKarnegisJNPattersonRPDevelopment and evaluation of an impedance cardiac output systemAerosp Med196637120812Search in Google Scholar

Kubicek WG, Kottke J, Ramos MU, et al. The Minnesota impedance cardiograph-theory and applications. Biomed Eng 1974;9:410–16.4416602KubicekWGKottkeJRamosMUThe Minnesota impedance cardiograph-theory and applicationsBiomed Eng1974941016Search in Google Scholar

Quail AW, Traugott FM, Porges WL, et al. Thoracic resistivity for stroke volume determination in impedance cardiography. J Appl Physiol 1981;50:191–95.10.1152/jappl.1981.50.1.191QuailAWTraugottFMPorgesWLThoracic resistivity for stroke volume determination in impedance cardiographyJ Appl Physiol198150191957204186Open DOISearch in Google Scholar

Bernstein DP. A new stroke volume equation for thoracic electrical bioimpedance: theory and rationale. Crit Care Med 1986;14:904–09.10.1097/00003246-198610000-000173757533BernsteinDPA new stroke volume equation for thoracic electrical bioimpedance: theory and rationaleCrit Care Med198614904093757533Open DOISearch in Google Scholar

Feldschuh J, Enson Y. Prediction of the normal blood volume. Relation of blood volume to body habitus. Circulation 1977;56:605–12.FeldschuhJEnsonYPrediction of the normal blood volumeRelation of blood volume to body habitus. Circulation1977566051210.1161/01.CIR.56.4.605Search in Google Scholar

Djordjevich L, Sadove MS, Mayoral J, et al. Correlation between arterial blood pressure levels and (dZ/dt)min in impedance plethysmography. IEEE Trans Biomed Eng 1985;32:69–73.DjordjevichLSadoveMSMayoralJCorrelation between arterial blood pressure levels and (dZ/dt)min in impedance plethysmographyIEEE Trans Biomed Eng198532697310.1109/TBME.1985.3256323980034Search in Google Scholar

Brown CV, Shoemaker WC, Wo CC, et al. Is noninvasive hemodynamic monitoring appropriate for the elderly critically injured patient? J Trauma 2005;58:102–71567415810.1097/01.TA.0000105990.05074.4ABrownCVShoemakerWCWoCCIs noninvasive hemodynamic monitoring appropriate for the elderly critically injured patient?J Trauma2005581027Search in Google Scholar

Faes TJ, Raaijmakers E, Meijer JH, et al. Towards a theoretical understanding of stroke volume estimation with impedance cardiography. Ann NY Acad Sci 1999;873:128–34.10.1111/j.1749-6632.1999.tb09459.xFaesTJRaaijmakersEMeijerJHTowards a theoretical understanding of stroke volume estimation with impedance cardiographyAnn NY Acad Sci199987312834Open DOISearch in Google Scholar

Bernstein DP, Lemmens HJ. Stroke volume equation for impedance cardiography. Med Biol Eng Comput 2005;43:443–50.1625542510.1007/BF02344724BernsteinDPLemmensHJStroke volume equation for impedance cardiographyMed Biol Eng Comput20054344350Search in Google Scholar

Gardin JM, Burn CS, Childs WJ, et al. Evaluation of blood flow velocity in the ascending aorta and main pulmonary artery of normal subjects by Doppler echocardiography. Am Heart J 1984;107:310–19.10.1016/0002-8703(84)90380-66695664GardinJMBurnCSChildsWJEvaluation of blood flow velocity in the ascending aorta and main pulmonary artery of normal subjects by Doppler echocardiographyAm Heart J198410731019Open DOISearch in Google Scholar

Matsuda Y, Yamada S, Kuragane H, et al. Assessment of left ventricular performance in man with impedance cardiography. Jpn Circ J 1978;42:945–54.10.1253/jcj.42.945731836MatsudaYYamadaSKuraganeHAssessment of left ventricular performance in man with impedance cardiographyJpn Circ J19784294554Open DOISearch in Google Scholar

Lozano DL, Norman G, Knox D, et al. Where to B in dZ/dt. Psychophysiology 2007;44:113–19.LozanoDLNormanGKnoxDWhere to B in dZ/dtPsychophysiology2007441131910.1111/j.1469-8986.2006.00468.xSearch in Google Scholar

Debski TT, Zhang Y, Jennings JR, et al. Stability of cardiac impedance measures: aortic valve opening (B point) detection and scoring. Biol Psychol 1993;36:63–74.10.1016/0301-0511(93)90081-I8218625DebskiTTZhangYJenningsJRStability of cardiac impedance measures: aortic valve opening (B point) detection and scoringBiol Psychol1993366374Open DOISearch in Google Scholar

Adler D, Nikolic SD, Pajaro O, et al. Time to dP/dtmax reflects both inotropic and chronotropic properties of cardiac contraction. Physiol Meas 1996;17:287–9510.1088/0967-3334/17/4/0068953627AdlerDNikolicSDPajaroOTime to dP/dtmax reflects both inotropic and chronotropic properties of cardiac contractionPhysiol Meas199617287958953627Open DOISearch in Google Scholar

Lyseggen E, Rabben SI, Skulstad H, et al. Myocardial acceleration during isovolumic contraction: relationship to contractility. Circulation 2005;111:1362–9.1575321710.1161/01.CIR.0000158432.86860.A6LyseggenERabbenSISkulstadHMyocardial acceleration during isovolumic contraction: relationship to contractilityCirculation20051111362915753217Search in Google Scholar

Welham KC, Mohapatra SN, Hill DW, et al. The first derivative of the transthoracic electrical impedance as an index of changes in myocardial contractility in the intact anaesthetized dog. Intensive Care Med 1978;4:43–50.10.1007/BF01683136WelhamKCMohapatraSNHillDWThe first derivative of the transthoracic electrical impedance as an index of changes in myocardial contractility in the intact anaesthetized dogIntensive Care Med197844350621315Open DOISearch in Google Scholar

Kim DW. Detection of physiologic events by impedance. Yonsei Med J 1989;30:1–11.10.3349/ymj.1989.30.1.1KimDWDetection of physiologic events by impedanceYonsei Med J1989301112662632Open DOISearch in Google Scholar

Rubal BJ, Baker LE, Poder TC. Correlation between maximum dZ/dt and parameters of left ventricular performance. Med Biol Eng Comput 1980;18:541–8.10.1007/BF024431247464275RubalBJBakerLEPoderTCCorrelation between maximum dZ/dt and parameters of left ventricular performanceMed Biol Eng Comput19801854187464275Open DOISearch in Google Scholar

Barbacki M, Gluck A, Sandhage K. Estimation of the correlation between the transcutaneous aortic flow velocity curve and impedance cardiogram in normal children. Cor Vasa 1981;23:291–8.7297075BarbackiMGluckASandhageKEstimation of the correlation between the transcutaneous aortic flow velocity curve and impedance cardiogram in normal childrenCor Vasa1981232918Search in Google Scholar

Winter PJ, Deuchar DC, Noble MI, et al. Relationship between the ballistocardiogram and the movement of blood from the left ventricle in the dog. Cardiovasc Res 1967;1:194–200.605885710.1093/cvr/1.2.194WinterPJDeucharDCNobleMIRelationship between the ballistocardiogram and the movement of blood from the left ventricle in the dogCardiovasc Res196711942006058857Search in Google Scholar

Kubicek WG. On the source of peak first time derivative (dZ/dt) during impedance cardiography. Ann Biomed Eng 1989;17:459–62.261041710.1007/BF02368065KubicekWGOn the source of peak first time derivative (dZ/dt) during impedance cardiographyAnn Biomed Eng198917459622610417Search in Google Scholar

Mohapatra SN, Hill DW. Origin of the impedance cardiogram. In: Mohapatra SN. Non-invasive cardiovascular monitoring by electrical impedance technique. London: Pitman Medical Limited.;1981. P. 41.MohapatraSNHillDWOrigin of the impedance cardiogramMohapatraSNNon-invasive cardiovascular monitoring by electrical impedance techniqueLondonPitman Medical Limited198141Search in Google Scholar

Seitz WS, McIlroy MB. Interpretation of the HJ interval of the normal ballistocardiogram based on the principle of conservation of momentum and aortic ultrasonic Doppler velocity measurements during left ventricular ejection. Cardiovasc Res 1988;22:571–74.10.1093/cvr/22.8.5713073865SeitzWSMcIlroyMBInterpretation of the HJ interval of the normal ballistocardiogram based on the principle of conservation of momentum and aortic ultrasonic Doppler velocity measurements during left ventricular ejectionCardiovasc Res198822571743073865Open DOISearch in Google Scholar

Reeves TJ, Hefner LL, Jones WB, et al. Wide frequency range force ballistocardiogram: its correlation with cardiovascular dynamics. Circulation 1957;16:43–53.1344714910.1161/01.CIR.16.1.43ReevesTJHefnerLLJonesWBWide frequency range force ballistocardiogram: its correlation with cardiovascular dynamicsCirculation195716435313447149Search in Google Scholar

Kolettis M, Jenkins BS, Webb-Peploe MM. Assessment of left ventricular function by indices derived from aortic flow velocity. Br Heart J 1976;38:18–31.125229210.1136/hrt.38.1.18KolettisMJenkinsBSWebb-PeploeMMAssessment of left ventricular function by indices derived from aortic flow velocityBr Heart J19763818314829651252292Search in Google Scholar

Sohn S, Kim HS. Doppler aortic flow velocity measurements in healthy children. J Korean Med Sci 2001;16:140–4.10.3346/jkms.2001.16.2.140SohnSKimHSDoppler aortic flow velocity measurements in healthy childrenJ Korean Med Sci2001161404305471611306737Open DOISearch in Google Scholar

Wallmeyer K, Wann LS, Sagar KB, et al. The influence of preload and heart rate on Doppler echocardiographic indexes of left ventricular performance: comparison with invasive indexes in an experimental preparation. Circulation 1986;74:181–6.10.1161/01.CIR.74.1.181WallmeyerKWannLSSagarKBThe influence of preload and heart rate on Doppler echocardiographic indexes of left ventricular performance: comparison with invasive indexes in an experimental preparationCirculation19867418163085976Open DOISearch in Google Scholar

Ehlert RE, Schmidt HD. An experimental evaluation of impedance cardiographic and electromagnetic measurements of stroke volumes. J Med Eng Technol 1982;6:193–200.10.3109/030919082090410197143415EhlertRESchmidtHDAn experimental evaluation of impedance cardiographic and electromagnetic measurements of stroke volumesJ Med Eng Technol198261932007143415Open DOISearch in Google Scholar

Wallace AW, Salahieh A, Lawrence A, et al. Endotracheal cardiac output monitor. Anesthesiology 2000;92:178–89.10.1097/00000542-200001000-0003010638915WallaceAWSalahiehALawrenceAEndotracheal cardiac output monitorAnesthesiology20009217889Open DOISearch in Google Scholar

Rex S, Brose S, Metzelder S, et al. Prediction of fluid responsiveness in patients during cardiac surgery. Br J Anaesth 2004;93:782–8.10.1093/bja/aeh28015465840RexSBroseSMetzelderSPrediction of fluid responsiveness in patients during cardiac surgeryBr J Anaesth2004937828Open DOISearch in Google Scholar

Della Rocca G, Costa GM, Coccia C, et al. Preload index: pulmonary artery occlusion pressure versus intrathoracic blood volume monitoring during lung transplantation. Anesth Analg 2002;95:835–43.12351254DellaRocca GCostaGMCocciaCPreload index: pulmonary artery occlusion pressure versus intrathoracic blood volume monitoring during lung transplantationAnesth Analg2002958354310.1213/00000539-200210000-00009Search in Google Scholar

Godje O, Peyerl M, Seebauer T, et al. Central venous pressure, pulmonary capillary wedge pressure and intrathoracic blood volumes a preload indicators in cardiac surgery patients. Eur J Cardiothorac Surg 1998;13:533–9.10.1016/S1010-7940(98)00063-39663534GodjeOPeyerlMSeebauerTCentral venous pressure, pulmonary capillary wedge pressure and intrathoracic blood volumes a preload indicators in cardiac surgery patientsEur J Cardiothorac Surg1998135339Open DOISearch in Google Scholar

Kumar A, Anel R, Bunnell E, et al. Pulmonary artery occlusion pressure and central venous pressure fail to predict ventricular filling volume, cardiac performance, or the response to volume infusion in normal subjects. Crit Care Med 2004;32:691–99.1509094910.1097/01.CCM.0000114996.68110.C9KumarAAnelRBunnellEPulmonary artery occlusion pressure and central venous pressure fail to predict ventricular filling volume, cardiac performance, or the response to volume infusion in normal subjectsCrit Care Med20043269199Search in Google Scholar

Lindstedt L, Schaeffer PJ. Use of allometry in predicting anatomical and physiologic parameters of mammals. Lab Anim 2002;36:1–19.10.1258/0023677021911731LindstedtLSchaefferPJUse of allometry in predicting anatomical and physiologic parameters of mammalsLab Anim20023611911833526Open DOISearch in Google Scholar

Feldschuh J, Enson Y. Prediction of normal blood volume: relation of blood volume to body habitus. Circulation 1977;56:605–12.10.1161/01.CIR.56.4.605902387FeldschuhJEnsonYPrediction of normal blood volume: relation of blood volume to body habitusCirculation19775660512902387Open DOISearch in Google Scholar

Collis T, Devereux RB, Roman MJ, et al. Relations of stroke volume and cardiac output to body composition: the strong heart study.Circulation 2001;103:820–5.1117178910.1161/01.CIR.103.6.820CollisTDevereuxRBRomanMJRelations of stroke volume and cardiac output to body composition: the strong heart studyCirculation2001103820511171789Search in Google Scholar

West GB, Brown JH, Enquist BJ. A general model for the origin of allometric scaling laws in biology. Science 1997;276:122–6.908298310.1126/science.276.5309.122WestGBBrownJHEnquistBJA general model for the origin of allometric scaling laws in biologyScience199727612269082983Search in Google Scholar

Holt JP, Rhode A, Kines H. Ventricular volumes and body weight in mammals. Am J Physiol 1968;215:704–15.567101010.1152/ajplegacy.1968.215.3.704HoltJPRhodeAKinesHVentricular volumes and body weight in mammalsAm J Physiol1968215704155671010Search in Google Scholar

Hofer CK, Zalunardo P, Klaghofer R, et al. Changes in intrathoracic blood volume associated with pneumoperitoneum and positioning. Acta Anaesthesiol Scand. 2002;46:303–8.10.1034/j.1399-6576.2002.t01-1-460313.x11939922HoferCKZalunardoPKlaghoferRChanges in intrathoracic blood volume associated with pneumoperitoneum and positioningActa Anaesthesiol Scand2002463038Open DOISearch in Google Scholar

Sageman WS. Reliability and precision of a new thoracic electrical bioimpedance monitor in a lower body negative pressure model. Crit Care Med 1999;27:1986–90.10.1097/00003246-199909000-00044SagemanWSReliability and precision of a new thoracic electrical bioimpedance monitor in a lower body negative pressure modelCrit Care Med199927198690Open DOISearch in Google Scholar

Goldman JH, Schiller NB, Lim DC, et al. usefulness of stroke distance by echocardiography as a surrogate marker of cardiac output that is independent of gender and size in a normal population. Am J Cardiol 2001;87:499–502.10.1016/S0002-9149(00)01417-XGoldmanJHSchillerNBLimDCusefulness of stroke distance by echocardiography as a surrogate marker of cardiac output that is independent of gender and size in a normal populationAm J Cardiol200187499502Open DOISearch in Google Scholar

Young JD, McQuillan P. Comparison of thoracic electrical bioimpedance and thermodilution for the measurement of cardiac index in patients with severe sepsis. Br J Anaesth 1993:70:58–62.YoungJDMcQuillanPComparison of thoracic electrical bioimpedance and thermodilution for the measurement of cardiac index in patients with severe sepsisBr J Anaesth70586210.1093/bja/70.1.588431335Search in Google Scholar

Raaijmakers E, Faes TJ, Kunst PW, et al. The influence of extravascular lung water on cardiac output measurements using thoracic impedance cardiograph. Physiol Meas 1998;19:491–9.10.1088/0967-3334/19/4/004RaaijmakersEFaesTJKunstPWThe influence of extravascular lung water on cardiac output measurements using thoracic impedance cardiographPhysiol Meas19981949199863675Open DOISearch in Google Scholar

Genoni M, Pelosi P, Romand JA, et al. Determination of cardiac output during mechanical ventilation by electrical bioimpedance or thermodilution in patients with acute lung injury: effects of positive end-expiratory pressure. Crit Care Med 1998;26:1441–5.971010710.1097/00003246-199808000-00035GenoniMPelosiPRomandJADetermination of cardiac output during mechanical ventilation by electrical bioimpedance or thermodilution in patients with acute lung injury: effects of positive end-expiratory pressureCrit Care Med199826144159710107Search in Google Scholar

Critchley LA, Calcroft RM, Tan PY, et al. The effect of lung injury and excessive lung fluid, on impedance cardiac output measurements, in the critically ill. Intensive Care Med. 2000;26:679–85.1094538310.1007/s001340051232CritchleyLACalcroftRMTanPYThe effect of lung injury and excessive lung fluid, on impedance cardiac output measurements, in the critically illIntensive Care Med2000266798510945383Search in Google Scholar

Peng ZY, Critchley LA, Fok BS. An investigation to show the effect of lung fluid on impedance cardiac output in the anaesthetized dog. Br J Anaesth 2005;95:458–64.1605165110.1093/bja/aei206PengZYCritchleyLAFokBSAn investigation to show the effect of lung fluid on impedance cardiac output in the anaesthetized dogBr J Anaesth2005954586416051651Search in Google Scholar

Schmidt C, Theilmeier G, Van Aken H, et al. Comparison of electrical velocimetry and transoesophageal Doppler echocardiography for measuring stroke volume and cardiac output. Br J Anaesth 2005;95:603–1010.1093/bja/aei22416155037SchmidtCTheilmeierGVanAken HComparison of electrical velocimetry and transoesophageal Doppler echocardiography for measuring stroke volume and cardiac outputBr J Anaesth2005956031016155037Open DOISearch in Google Scholar

Suttner S, Schollhorn T, Boldt J, et al. Noninvasive assessment of cardiac output using thoracic electrical bioimpedance in hemodynamically stable and unstable patients after cardiac surgery: a comparison with pulmonary artery thermodilution. Intensive Care Med 2006;32:1253–8.SuttnerSSchollhornTBoldtJNoninvasive assessment of cardiac output using thoracic electrical bioimpedance in hemodynamically stable and unstable patients after cardiac surgery: a comparison with pulmonary artery thermodilutionIntensive Care Med2006321253810.1007/s00134-006-0409-x17039348Search in Google Scholar

Norozi K, Thrane L, Manner J, et al. Electrical velocimetry for measuring cardiac output in children with congenital heart disease. Br J Anaesth 2008;100:88–94.1802495410.1093/bja/aem320NoroziKThraneLMannerJElectrical velocimetry for measuring cardiac output in children with congenital heart diseaseBr J Anaesth2008100889418024954Search in Google Scholar

Zoremba N, Bickenbach J, Krauss B, et al. Comparison of electrical velocimetry and thermodilution techniques for the measurement of cardiac output. Acta Anaesthesiol Scand 2007;51:1314–9.1794463310.1111/j.1399-6576.2007.01445.xZorembaNBickenbachJKraussBComparison of electrical velocimetry and thermodilution techniques for the measurement of cardiac outputActa Anaesthesiol Scand2007511314917944633Search in Google Scholar