Acceso abierto

Association of CYP3A5 and POR polymorphisms with the maintenance tacrolimus dosage requirement in Thai recipients of kidney transplants


Cite

Bowman LJ, Brennan DC. The role of tacrolimus in renal transplantation. Expert Opin Pharmacother. 2008; 9:635-43.10.1517/14656566.9.4.63518312164BowmanLJBrennanDCThe role of tacrolimus in renal transplantationExpert Opin Pharmacother2008963543Open DOISearch in Google Scholar

Haufroid V, Wallemacq P, VanKerckhove V, Elens L, De Meyer M, Eddour DC, et al. CYP3A5 and ABCB1 polymorphisms and tacrolimus pharmacokinetics in renal transplant candidates: guidelines from an experimental study. Am J Transplant. 2006; 6:2706-13.10.1111/j.1600-6143.2006.01518.x17049058Haufroid VWallemacq PVanKerckhove VElens LDe Meyer MEddourDCet alCYP3A5 and ABCB1 polymorphisms and tacrolimus pharmacokinetics in renal transplant candidates: guidelines from an experimental studyAm J Transplant20066270613Open DOISearch in Google Scholar

Schiff J, Cole E, Cantarovich M. Therapeutic monitoring of calcineurin inhibitors for the nephrologist. Clin J Am Soc Nephrol. 2007; 2:374-84.10.2215/CJN.0379110617699437Schiff JCole ECantarovichMTherapeutic monitoring of calcineurin inhibitors for the nephrologistClin J Am Soc Nephrol2007237484Open DOISearch in Google Scholar

Birdwell KA, Decker B, Barbarino JM, Peterson JF, Stein CM, Sadee W, et al. Clinical Pharmacogenetics Implementation Consortium (CPIC) guidelines for CYP3A5 genotype and tacrolimus dosing. Clin Pharmacol Ther. 2015; 98:15-24.BirdwellKADecker BBarbarinoJMPetersonJFSteinCMSadee Wet alClinical Pharmacogenetics Implementation Consortium (CPIC) guidelines for CYP3A5 genotype and tacrolimus dosingClin Pharmacol Ther201598152410.1002/cpt.113Search in Google Scholar

Burckart GJ, Amur S. Update on the clinical pharmacogenomics of organ transplantation. Pharmacogenomics. 2010; 11:227-36.2013636110.2217/pgs.09.177BurckartGJAmurSUpdate on the clinical pharmacogenomics of organ transplantationPharmacogenomics20101122736Search in Google Scholar

Hesselink DA, Bouamar R, Elens L, van Schaik RH, van Gelder T. The role of pharmacogenetics in the disposition of and response to tacrolimus in solid organ transplantation. Clin Pharmacokinet. 2014; 53: 123-39.10.1007/s40262-013-0120-324249597HesselinkDABouamar RElens Lvan SchaikRHvan GelderTThe role of pharmacogenetics in the disposition of and response to tacrolimus in solid organ transplantationClin Pharmacokinet20145312339Open DOISearch in Google Scholar

Provenzani A, Santeusanio A, Mathis E, Notarbartolo M, Labbozzetta M, Poma P, et al. Pharmacogenetic considerations for optimizing tacrolimus dosing in liver and kidney transplant patients. World J Gastroenterol. 2013; 19:9156-73.10.3748/wjg.v19.i48.915624409044Provenzani ASanteusanio AMathis ENotarbartolo MLabbozzetta MPoma Pet alPharmacogenetic considerations for optimizing tacrolimus dosing in liver and kidney transplant patientsWorld J Gastroenterol201319915673Open DOISearch in Google Scholar

Hustert E, Haberl M, Burk O, Wolbold R, He YQ, Klein K, et al. The genetic determinants of the CYP3A5 polymorphism. Pharmacogenetics. 2001; 11:773-79.1174034110.1097/00008571-200112000-00005Hustert EHaberl MBurk OWolbold RHeYQKlein Ket alThe genetic determinants of the CYP3A5 polymorphismPharmacogenetics20011177379Search in Google Scholar

Kuehl P, Zhang J, Lin Y, Lamba J, Assem M, Schuetz J, et al. Sequence diversity in CYP3A promoters and characterization of the genetic basis of polymorphic CYP3A5 expression. Nature Genetics. 2001; 27:383-91.10.1038/8688211279519Kuehl PZhang JLin YLamba JAssem MSchuetz Jet alSequence diversity in CYP3A promoters and characterization of the genetic basis of polymorphic CYP3A5 expressionNature Genetics20012738391Open DOISearch in Google Scholar

Roy JN, Lajoie J, Zijenah LS, Barama A, Poirier C, Ward BJ, et al. CYP3A5 genetic polymorphisms in different ethnic populations. Drug Metab Dispos. 2005; 33:884-7.10.1124/dmd.105.00382215833928RoyJNLajoie JZijenahLSBarama APoirier CWardBJet alCYP3A5 genetic polymorphisms in different ethnic populationsDrug Metab Dispos2005338847Open DOISearch in Google Scholar

Lamba JK, Lin YS, Schuetz EG Thummel KE. Genetic contribution to variable human CYP3A-mediated metabolism. Adv Drug Deliv Rev. 2002; 54:1271-94.1240664510.1016/S0169-409X(02)00066-2LambaJKLinYSSchuetzEGThummelKEGenetic contribution to variable human CYP3A-mediated metabolismAdv Drug Deliv Rev200254127194Search in Google Scholar

Tada H, Tsuchiya N, Satoh S, Kagaya H, Li Z, Sato K, et al. Impact of CYP3A5 and MDR1(ABCB1) C3435T polymorphisms on the pharmacokinetics of tacrolimus in renal transplant recipients. Transplant Proc. 2005; 37:1730-2.1591944710.1016/j.transproceed.2005.02.073Tada HTsuchiya NSatoh SKagaya HLi ZSato Ket alImpact of CYP3A5 and MDR1(ABCB1) C3435T polymorphisms on the pharmacokinetics of tacrolimus in renal transplant recipientsTransplant Proc20053717302Search in Google Scholar

Tsuchiya N, Satoh S, Tada H, Li Z, Ohyama C, Sato K, et al. Influence of CYP3A5 and MDR1 (ABCB1) polymorphisms on the pharmacokinetics of tacrolimus in renal transplant recipients. Transplant. 2004; 78: 1182-7.10.1097/01.TP.0000137789.58694.B4Tsuchiya NSatoh STada HLi ZOhyama CSato Ket alInfluence of CYP3A5 and MDR1 (ABCB1) polymorphisms on the pharmacokinetics of tacrolimus in renal transplant recipientsTransplant20047811827Open DOISearch in Google Scholar

Masters BS. The journey from NADPH-cytochrome P450 oxidoreductase to nitric oxide synthases. Biochem Biophys Res Commun. 2005; 338:507-19.10.1016/j.bbrc.2005.09.16516246311MastersBSThe journey from NADPH-cytochrome P450 oxidoreductase to nitric oxide synthasesBiochem Biophys Res Commun200533850719Open DOISearch in Google Scholar

Agrawal V, Choi JH, Giacomini KM, Miller WL. Substrate-specific modulation of CYP3A4 activity by genetic variants of cytochrome P450 oxidoreductase. Pharmacogenet Genomics. 2010; 20:611-8.2069730910.1097/FPC.0b013e32833e0cb5Agrawal VChoiJHGiacominiKMMillerWLSubstrate-specific modulation of CYP3A4 activity by genetic variants of cytochrome P450 oxidoreductasePharmacogenet Genomics2010206118Search in Google Scholar

Agrawal V, Huang N, Miller WL. Pharmacogenetics of P450 oxidoreductase: effect of sequence variants on activities of CYP1A2 and CYP2C19. Pharmacogenet Genomics. 2008; 18:569-76.1855103710.1097/FPC.0b013e32830054acAgrawal VHuang NMillerWLPharmacogenetics of P450 oxidoreductase: effect of sequence variants on activities of CYP1A2 and CYP2C19Pharmacogenet Genomics20081856976Search in Google Scholar

Huang N, Agrawal V, Giacomini KM, Miller WL. Genetics of P450 oxidoreductase: sequence variation in 842 individuals of four ethnicities and activities of 15 missense mutations. Proc Natl Acad Sci USA. 2008; 105:1733-38.10.1073/pnas.0711621105Huang NAgrawal VGiacominiKMMillerWLGenetics of P450 oxidoreductase: sequence variation in 842 individuals of four ethnicities and activities of 15 missense mutationsProc Natl Acad Sci USA2008105173338Open DOISearch in Google Scholar

Oneda B, Crettol S, Jaquenoud Sirot E, Bochud M, Ansermot N, Eap CB. The P450 oxidoreductase genotype is associated with CYP3A activity in vivo as measured by the midazolam phenotyping test. Pharmacogenet Genomics. 2009; 19:877-83.10.1097/FPC.0b013e32833225e7Oneda BCrettol SJaquenoud Sirot EBochud MAnsermot NEapCBThe P450 oxidoreductase genotype is associated with CYP3 A activity in vivo as measured by the midazolam phenotyping testPharmacogenet Genomics20091987783Open DOISearch in Google Scholar

Zhang JJ, Zhang H, Ding XL, Ma S, Miao LY. Effect of the P450 oxidoreductase 28 polymorphism on the pharmacokinetics of tacrolimus in Chinese healthy male volunteers. Eur J Clin Pharmacol. 2013; 69:807-12.10.1007/s00228-012-1432-123097010ZhangJJZhang HDingXLMa SMiaoLYEffect of the P450 oxidoreductase 28 polymorphism on the pharmacokinetics of tacrolimus in Chinese healthy male volunteersEur J Clin Pharmacol20136980712Open DOISearch in Google Scholar

Li CJ, Li L, Lin L, Jiang HX, Zhong ZY, Li WM, et al. Impact of the CYP3A5, CYP3A4, COMT, IL-10 and POR genetic polymorphisms on tacrolimus metabolism in Chinese renal transplant recipients. PLoS One. 2014; 9:e86206.10.1371/journal.pone.008620624465960LiCJLi LLin LJiangHXZhongZYLiWMet alImpact of the CYP3A5, CYP3A4, COMT, IL-10 and POR genetic polymorphisms on tacrolimus metabolism in Chinese renal transplant recipientsPLoS One20149e86206Open DOISearch in Google Scholar

Zhang J, Zhang X, Liu L, Tong W. Value of CYP3A5 genotyping on determining initial dosages of tacrolimus for Chinese renal transplant recipients. Transplant Proc. 2010; 42:3459-64.2109479710.1016/j.transproceed.2010.06.028Zhang JZhang XLiu LTongWValue of CYP3A5 genotyping on determining initial dosages of tacrolimus for Chinese renal transplant recipientsTransplant Proc201042345964Search in Google Scholar

Lesche D, Sigurdardottir V, Setoud R, Oberhansli M, Carrel T, Fiedler GM, et al. CYP3A5*3 and POR*28 genetic variants influence the required dose of tacrolimus in heart transplant recipients. Ther Drug Monit. 2014; 36:710-5.10.1097/FTD.000000000000008024739669Lesche DSigurdardottir VSetoud ROberhansli MCarrel TFiedlerGMet alCYP3A5*3 and POR*28 genetic variants influence the required dose of tacrolimus in heart transplant recipientsTher Drug Monit2014367105Open DOISearch in Google Scholar

de Jonge H, Metalidis C, Naesens M, Lambrechts D, Kuypers DR. The P450 oxidoreductase *28 SNP is associated with low initial tacrolimus exposure and increased dose requirements in CYP3A5-expressing renal recipients. Pharmacogenomics. 2011; 12:1281-91.10.2217/pgs.11.7721770725de Jonge HMetalidis CNaesens MLambrechts DKuypersDRThe P450 oxidoreductase *28 SNP is associated with low initial tacrolimus exposure and increased dose requirements in CYP3A5-expressing renal recipientsPharmacogenomics201112128191Open DOISearch in Google Scholar

Elens L, Hesselink DA, Bouamar R, Budde K, de Fijter JW, De Meyer M, et al. Impact of POR*28 on the pharmacokinetics of tacrolimus and cyclosporine A in renal transplant patients. Ther Drug Monit. 2014; 36:71-9.24061445Elens LHesselinkDABouamar RBudde Kde FijterJWDe Meyer Met alImpact of POR*28 on the pharmacokinetics of tacrolimus and cyclosporine A in renal transplant patientsTher Drug Monit20143671910.1097/FTD.0b013e31829da6ddSearch in Google Scholar

Lunde I, Bremer S, Midtvedt K, Mohebi B, Dahl M, Bergan S, et al. The influence of CYP3A, PPARA, and POR genetic variants on the pharmacokinetics of tacrolimus and cyclosporine in renal transplant recipients. Eur J Clin Pharmacol. 2014; 70:685-93.10.1007/s00228-014-1656-324658827Lunde IBremer SMidtvedt KMohebi BDahl MBergan Set alThe influence of CYP3A, PPARA, and POR genetic variants on the pharmacokinetics of tacrolimus and cyclosporine in renal transplant recipientsEur J Clin Pharmacol20147068593Open DOISearch in Google Scholar

Fluck CE, Nicolo C, Pandey AV. Clinical, structural and functional implications of mutations and polymorphisms in human NADPH P450 oxidoreductase. Fundam Clin Pharmacol. 2007; 21: 399-410.10.1111/j.1472-8206.2007.00520.x17635179FluckCENicolo CPandeyAVClinical, structural and functional implications of mutations and polymorphisms in human NADPH P450 oxidoreductaseFundam Clin Pharmacol200721399410Open DOISearch in Google Scholar

Hubbard PA, Shen AL, Paschke R, Kasper CB, Kim JJ. NADPH-cytochrome P450 oxidoreductase. Structural basis for hydride and electron transfer. J Biol Chem. 2001; 276:29163-70.10.1074/jbc.M10173120011371558HubbardPAShenALPaschke RKasperCBKimJJNADPH-cytochrome P450 oxidoreductase. Structural basis for hydride and electron transferJ Biol Chem20012762916370Open DOISearch in Google Scholar

eISSN:
1875-855X
Idioma:
Inglés
Calendario de la edición:
6 veces al año
Temas de la revista:
Medicine, Assistive Professions, Nursing, Basic Medical Science, other, Clinical Medicine