Cite

http://www.zimmer.com/ctl?template=CP&op=global&action=1&id=33 Search in Google Scholar

Ryan G., Pandit A., Apatsidis D.P.: Fabrication methods of porous metals for use in orthopaedic applications. Biomaterials 27 (2006), 2651–2670. Search in Google Scholar

Zieliński A., Sobieszczyk S., Serbiński W., Seramak T., Ossowska A.: Materials design for the titanium scaffold based implant. Solid State Phenomena 183 (2012), 225-232. Search in Google Scholar

Li Z., Gu X., Lou S., Zheng Y.: The development of binary Mg-Ca alloys for use as biodegradable materials within bone. Biomaterials 29 (2008), 1329-1344. Search in Google Scholar

Virtanen S.: Biodegradable Mg and Mg alloys: Corrosion and biocompatibility. Materials Science and Engineering B 176 (2011), 1600-1608. 10.1016/j.mseb.2011.05.028Search in Google Scholar

Kaźnica A., Joachimiak R., Drewa T., Rawo T., Deszczyński J.: New trends in tissue engineering. Arthroscopy and Joint Surgery 3(3) (2007), 11-16. Search in Google Scholar

Tian H., Tang Z., Zhuang X., Chen X., Jing X.: Biodegradable synthetic polymers: Preparation, functionalization and biomedical application. Prog. Polym. Sci. 37 (2012), 237-280. 10.1016/j.progpolymsci.2011.06.004Search in Google Scholar

Liu X., Ma X. P.: Polymeric Scaffolds for Bone Tissue Engineering. Ann. Biomed. Eng. 32 (2004), 477-486. Search in Google Scholar

Nassif L., Sabban M.: Mesenchymal Stem Cells in Combination with Scaffolds for Bone Tissue Engineering. Materials 4 (2011), 1793-1804. Search in Google Scholar

Liu C., Xia Z., Czrnuszka J. T.: Design and developement of three-dimensional scaffolds for tissue engineering. Chem. Eng. Res. Des. 85 (2007), 1051-1064. Search in Google Scholar

Liu Q., Jiang L., Shi R., Zhang L.: Synthesis, preparation, in vitro degradation, and application of novel degradable bioelastomers—A review. Prog. Polym. Sci. 37 (2012), 715-765. Search in Google Scholar

Tran N., Webster T. J.: Nanotechnology for bone materials. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 1 (2009), 336-351. Search in Google Scholar

Tudorachi N., Chiriac A. P., Lipsa R.: Biodegradable copolymers with succinimide and lactic acid units. Part I. Synthesis Possibilities. Polimery 56 (2011), 204-210. Search in Google Scholar

Jones C., Rogers S.: Combined use of titanium mesh and biocompatible osteoconductive polymer in the treatment of full thickness calvarial defects. Br. J. Oral and Maxillofacial Surg. 36 (1998), 143-145. Search in Google Scholar

Du C., Meijer G. J., van de Valk C., Haan R. E., Bezemer J. M., Hesseling S. C., Cui F. Z., Groot K., Layrolle P.: Bone growth in biomimetic apatite coated porous Polyactives 1000PEGT70PBT30 implants. Biomaterials 23 (2002), 4649-4656. Search in Google Scholar

Chang P. C., Liu B. Y., Liu C. M., Chou H. H., Ho M. H., Liu H. C., Wang D. M., Hou L. T.: Bone tissue engineering with novel rhBMP2-PLLA composite scaffolds. J. Biomed. Mater. Res. Part A (2007), 771-780. 10.1002/jbm.a.3103117226806Search in Google Scholar

Sharma B., Elisseeff J. H.: Engineering Structurally Organized Cartilage and Bone Tissues. Ann. Biomed. Eng. 32 (2004), 148-159. Search in Google Scholar

Du J. Z., Sun T. M., Weng S. Q., Chen X. S., Wang J.: Synthesis and Characterization of Photo-Cross-Linked Hydrogels Based on Biodegradable Polyphosphoesters and Poly(ethylene glycol) Copolymers. Biomacromolecules 8 (2007), 3375-3381. Search in Google Scholar

Li Q., Wang J., Shahani S., Sun D. D. N., Sharma B., Elisseeff J. H., LeongK. W.: Biodegradable and photocrosslinkable polyphosphoester hydrogel. Biomaterials 27 (2006), 1027-1034. Search in Google Scholar

Rai R., Tallawi M., Grigore A., Boccaccini A. R.: Synthesis, properties and biomedical applications of poly(glycerol sebacate) (PGS): A review. Prog. Polym. Sci. 37 (2012), 1051-1078. Search in Google Scholar

Bonzani I. C., Adhikari R., Houshyar S., Mayadunne R., Gunatillake P., Stevens M. M.: Synthesis of two-component injectable polyurethanes for bone tissue engineering. Biomaterials 28 (2007), 423-433. Search in Google Scholar

Puchała P., Kucharski G., Jaremczuk B., Monkos-Jaremczuk E.: Przegląd biomateriałów na podstawie piśmiennictwa. Chirurgia stomatologiczna, Twój Przegląd Stomatologiczny 10 (2008), 28-36. Search in Google Scholar

Rezwan K., Chen Q. Z., Blaker J. J., Boccaccini A. R.: Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. Biomaterials 27 (2006), 3413-3431. Search in Google Scholar

Kikuchi M., Itoh S., Ichinose S., Shinomiya K., Tanaka J.: Self-organization mechanism in a bone-like hydroxyapatite/collagen nanocomposite synthesized in vitro and its biological reaction in vivo. Biomaterials 22 (2001), 1705-1711. Search in Google Scholar

Zhai Y., Cui F. Z.: Recombinant human-like collagen directed growth of hydroxyapatite nanocrystals. J. Cryst. Growth 291 (2006), 202-206. Search in Google Scholar

Sun F., Zhou H., Lee J.: Various preparation methods of highly porous hydroxyapatite/polymer nanoscale biocomposites for bone regeneration. Acta Biomater. 7 (2011), 3813-3828. Search in Google Scholar

Yunoki S., Ikoma T., Tsuchiya a., Monkawa A., Ohta K., Sotome S., Shinomiya K., Tanaka J.: Fabrication and Mechanical and Tissue Ingrowth Properties of Unidirectionally Porous Hydroxyapatite/Collagen Composite. J. Biomed. Mater. Res. Part B (2006), 166-173. 10.1002/jbm.b.3058116767734Search in Google Scholar

Lin P. L., Fang H. W., Tseng T., Lee W. H.: Effects of hydroxyapatite dosage on mechanical and biological behaviors of polylactic acid composite materials. Mater. Lett. 61C (2007), 3009-3013. 10.1016/j.matlet.2006.10.064Search in Google Scholar

Kikuchi M., Matsumoto H. N., Yamada T., Koyama Y., Takakuda K., Tanaka J.: Glutaraldehyde cross-linked hydroxyapatite/collagen self-organized nanocomposites. Biomaterials 25 (2004), 63-69. Search in Google Scholar

Bakos D., Soldán M., Hernández-Fuentes I.: Hydroxyapatite – collagen - hyaluronic acid composite. Biomaterials 20 (1999), 191-195. Search in Google Scholar

Jee S.S.: , Taili T. Thula, Laurie B. Gower: Development of bone-like composites via the polymer-induced liquid-precursor (PILP) process. Part 1: Influence of polymer molecular weight. Acta Biomaterialia 6 (2010), 3676-3686. Search in Google Scholar

Ge Z., Baguenard S., Lim L. Y., Wee A., Khor E.: Hydroxyapatite-chitin materials as potential tissue engineered bone substitutes. Biomaterials 25 (2004), 1049-1058. Search in Google Scholar

Zhao F., Yin Y., Lu W. W., Leong C., Zhang W., Zhang J., Zhang M., Yao K.: Preparation and histological evaluation of biomimetic three-dimensional hydroxyapatite/chitosan-gelatin network composite scaffolds. Biomaterials 23 (2002), 3227-3234. Search in Google Scholar

Cai X., Tong H., Shen X., Chen W., Yan J., Hu J.: Preparation and characterization of homogeneous chitosan–polylactic acid/hydroxyapatite nanocomposite for bone tissue engineering and evaluation of its mechanical properties. Acta Biomaterialia 5 (2009), 2693-2703. Search in Google Scholar

Li J., Sun H., Sun D., Yao Y., Yao F., Yao K.: Biomimetic multicomponent polysaccharide/nano-hydroxyapatite composites for bone tissue engineering. Carbohydr. Polym. 85 (2011), 885-894. Search in Google Scholar

Li J., Chen Y. P., Yin Y., Yao F., Yao K.: Modulation of nano-hydroxyapatite size via formation on chitosan-gelatin network film in situ. Biomaterials 28 (2007), 781-790. Search in Google Scholar

Shikinami Y., Okuno M.: Bioresorbable devices made of forged composites of hydroxyapatite (HA) particles and poly L-lactide (PLLA). Part II: practical properties of miniscrews and miniplates. Biomaterials 22 (2001), 3197-3211. Search in Google Scholar

Ignjatović N., Savić V., Najman S., Plavsić M., Uskoković D.: A study of HAp/PLLA composite as a substitute for bone powder, using FT-IR spectroscopy. Biomaterials 22 (2001), 571-575. Search in Google Scholar

Shikinami Y., Okuno M.: Bioresorbable devices made of forged composites of hydroxyapatite (HA) particles and poly L-lactide (PLLA). Part I. Basic characteristics. Biomaterials 20 (1999), 859-877. Search in Google Scholar

Shikinami Y., Matsusue Y., Nakamura T.: The complete proces of bioresorption and bone replacement using devices made of forged composites of raw hydroxyapatite particles/ poly L-lactide (F-u-HA/PLLA). Biomaterials 26 (2005), 5542-5551. Search in Google Scholar

Mathieu L. M., Mueller T. L., Bourban P. E., Pioletti D. P., Muller R., Manson J. A. E.: Architecture and properties of anisotropic polymer composite scaffolds for bone tissue engineering. Biomaterials 27 (2006), 905-916. Search in Google Scholar

Russias J., Saiz E., Nalla R. K., Tomsia A. P.: Microspheres as building blocks for hydroxyapatite/polylactide biodegradable composites. J. Mater. Sci. 41 (2006), 5127-5133. Search in Google Scholar

Xu X., Chen X., Liu A., Hong Z., Jing X.: Electrospun poly(L-lactide)-grafted hydroxyapatite/poly(L-lactide) nanocomposites fibres. Eur. Polym. J. 43 (2007), 3187-3196. Search in Google Scholar

Petricca S. E., Marra K. G., Kumta P. N.: Chemical synthesis of poly(lactic-co-glycolic acid) /hydroxyapatite composites for orthopaedic applications. Acta Biomater. 2 (2006), 277-286. Search in Google Scholar

Kim S. S., Ahn K. M., Park M. S., Lee J. H., Choi C. Y., Kim B. S.: A poly(lactid-co-glycolide) /hydroxyapatite composite scaffolds with anhanced osteoconductivity. J. Biomed. Mater. Res. Part A (2006), 206-215. 10.1002/jbm.a.3083617072849Search in Google Scholar

Ignjatović N., Suljovrujić E., Stojanović Z., Uskoković D.: Structure and Characteristics of the Hot Pressed Hydroxyapatite/poly-L-lactide Composite. Sci. Sintering 34 (2002), 79-93. Search in Google Scholar

Aleksendrić D., Balać I., Tang C. Y., Tsui C. P., Uskoković P. S., Uskoković D. P.: Surface characterisation of PLLA polymer in HAp/PLLA biocomposite material by means of nanoindentation and artificial neural networks. Adv. Appl. Ceramics 109 (2010), 65-70. Search in Google Scholar

Cieslik M., Mertas A., Morawska-Chochół A., Sabat D., Orlicki R., Owczarek A., Król W., Cieslik T.: The evaluation of the possibilities of using PLGA co-polymer and its composites with carbon fibres or hydroxyapatite in the bone tissue regeneration proces – in vitro and in vivo examinations. Int. J. Mol. Sci. 10 (2009), 3224-3234. Search in Google Scholar

Yang Y., Zhao Y., Tang G., Li H., Yuan X., Fan Y.: In vitro degradation of porous poly(L-lactide-co-glycolide) /β-tricalcium phosphate (PLGA/β-TCP) scaffolds under dynamic and static conditions. Polym. Degrad. Stab. 93 (2008), 1838-1845. Search in Google Scholar

Kang S. W., Yang H. S., Seo S. W., Han D. K., Kim B. S.: Apatite-coated poly(lactic-co-glycolic acid) microspheres as an injectable scaffold for bone tissue engineering. J. Biomed. Mater. Res. Part A (2007), 747-756. 10.1002/jbm.a.3157217896763Search in Google Scholar

Rosół P., Chłopek J., Schweder C.: Kompozyty z polimerów biostabilnych i bioresorbowalnych modyfikowane bioaktywną ceramiką. Kompozyty 5 (2005), 25-30 Search in Google Scholar

Ignjatović N., Tomić S., Dakić M., Miljković M., Plavsić M., Uskoković D.: Synthesis and properties of hydroxyapatite/poly-L-lactide composite biomaterials. Biomaterials 20 (1999), 809-816. Search in Google Scholar

Tong H. W., Wang M., Lu W. W.: In vitro biological evaluation of fibrous PHBV polymer and CHA/PHBV nanocomposites scaffolds developed for tissue engineering applications. Bioceramics Developement and Applications 1 (2011), 1-3. Search in Google Scholar

Sun F., Zhou H., Lee J.: Various preparation methods of highly porous hydroxyapatite/polymer nanoscale biocomposites for bone regeneration. Acta Biomater. 7 (2011), 3813-3828. Search in Google Scholar

Zhou H., Lee J.: Nanoscale hydroxyapatite particles for bone tissue engineering. Acta Biomater. 7 (2011), 2769-2781. Search in Google Scholar

Juhasz J. A., Best S. M., Bonfield W.: Preparation of novel bioactive nano-calcium phosphate-hydrogel composites. Sci. Technol. Adv. Mater. 11 (2010), 1-7. Search in Google Scholar

Asefnejad A., Behnamghader A., Khorasani M. T., Farsadzadeh B.: Polyurethane/fluor-hydroxyapatite nanocomposite scaffolds for bone tissue engineering. Part I: morphological, physical and mechanical characterization. Int. J. Nanomedicine 6 (2011), 93-100. 10.2147/IJN.S13385302558921289986Search in Google Scholar

Bigi A., Boanini E., Gazzano M., Rubini K., Torricelli P.: Nanocrystalline hydroxyapatite-polyaspartate composites. Biomedical Materials and Engineering 14 (2004), 573-579. Search in Google Scholar

Ni J., Wang M.: In vitro evaluation of hydroxyapatite reinforced polyhydroxybutyrate composite. Mater. Sci. Eng., C 20 (2002), 101-109. Search in Google Scholar

Chen L. J., Wang M.: Production and evaluation of biodegradable composites based on PHB-PHV copolymer. Biomaterials 23 (2002), 2631-2639. Search in Google Scholar

Causa F., Netti P. A., Ambrosio L., Ciapetti G., Baldini N., Pagani S., Martini D., Giunti A.: Poly-ε-caprolactone/hydroxyapatite composites for bone regeneration: in vitro characterization and human osteoblast response. J. Biomed. Mater. Res. Part A (2005), 151-162. 10.1002/jbm.a.3052816258959Search in Google Scholar

Lee H. J., Kim S. E., Choi H. W., Kim C. W., Kim K. J., Lee S. C.: The effect of surface-modified nano-hydroxyapatite on biocompatibility of poly(ε-caprolactone)/hydroxyapatite nanocomposites. Eur. Polym. J. 43 (2007), 1602-1608. Search in Google Scholar

Du J. Z., Sun T. M., Weng S. Q., Chen X. S., Wang J.: Synthesis amd characterization of phot-cross-linked hydrogels based on biodegradable polyphosphoesters and poly(ethylene glycol) copolymers. Biomacromolecules 8 (2007), 3375-3381. Search in Google Scholar

Li Q., Wang J., Shahani S., Sun D. D. N., Sharma B., Elisseeff J. H., Leong K. W.: Biodegradable and photocrosslinkable polyphosphoester hydrogel. Biomaterials 27 (2006), 1027-1034. Search in Google Scholar

Tateishi T., Chen G., Ushida T.: Biodegradable porous scaffolds for tissue engineering. J. Artif. Organs 5 (2002), 77-83. Search in Google Scholar

Mistry A. S., Pham Q. P., Schouten C., Yeh T., Christenson E. M., Mikos A. G., Jansen J. A.: In vivo bone biocompability and degradation of porous fumarate-based polymer/alumoxane nanocomposites for bone tissue engineering. J. Biomed. Mater. Res. Part A (2009), 451-462. 10.1002/jbm.a.32371279757419191316Search in Google Scholar

Hedberg E. L., Kroese-Deutman C., Shih C. K., Crowther R. S., Carney D. H., Mikos A. G., Jansen J. A.: Effect of varied release kinetics of the osteogenic thrombin peptide TP508 from biodegradable, polymeric scaffolds on bone formation in vivo. J. Biomed. Mater. Res. Part A (2005), 343-353. 10.1002/jbm.a.30265Search in Google Scholar

Jack K. S., Velayudhan S., Luckman P., Trau M., Grondahl L., Cooper-White J.: The fabrication and characterization of biodegradable HA/PHBV nanoparticle–polymer composite scaffolds. Acta Biomater. 5 (2009), 2657-2667. Search in Google Scholar

Duan B., Wang M., Zhou W. Y., Cheung W. L., Li Z. Y., Lu W. W.: Three-dimensional nanocomposite scaffolds fabricated via selective laser sintering for bone tissue engineering. Acta Biomater. 6 (2010), 4495-4505. Search in Google Scholar

Kose G. T., Korkusuz F., Korkusuz P., Purali N., Ozkul A., Hasirci V.: Bone generation on PHBV matrices: an in vitro study. Biomaterials 24 (2003), 4999-5007. Search in Google Scholar

Chen G. Q., Wu Q.: The application of polyhydroxyalkanoates as tissue engineering materials. Biomaterials 26 (2005), 6565-6578. Search in Google Scholar

Greish Y. E., Bender J. D., Lakshmi S., Brown P. W., Allcock H. R., Laurencin C. T.: Low temperature formation of hydroxyapatite-poly(alkyloxybenzoate)phosphazene composites for biomedical applications. Biomaterials 26 (2005), 1-9. Search in Google Scholar

Greish Y. E., Bender J. D., Lakshmi S., Brown P. W., Allcock H. R., Laurencin C. T.: Composite formation from hydroxyapatite with sodium and potassium salts of polyphosphazene. J. Mater. Sci. Materials in Medicine 16 (2005), 613-620. Search in Google Scholar

Tan Q., Zhang K., Gu S., Ren J.: Mineralization of surfactant functionalized multi-walled carbon nanotubes (MWNTs) to prepare hydroxyapatite/MWNTs nanohybrid. Appl. Surf. Sci. 255 (2009), 7036-7039. Search in Google Scholar

Armentano I., Dottori M., Fortunati E., Mattioli S., Kenny J. M.: Biodegradable polymer matrix nanocomposites for tissue engineering: A review. Polym. Degrad. Stab. 95 (2010), 2126-2146. Search in Google Scholar

Błędzki A. K., Jaszkiewicz A.: Biokompozyty na podstawie polilaktydu wzmacniane włóknami pochodzenia naturalnego. Polimery 53 (2008), 564-570. Search in Google Scholar

Muzzarelli R. A. A., Ramos V., Stanic V., Dubini B., Mattioli-Belmonte M., Tosi G., Giardino R.: Osteogenesis promoted by calcium phosphate N,N-dicarboxymethyl chitosan. Carbohydr. Polym. 36 (1998), 267-276. 10.1016/S0144-8617(98)00008-3Search in Google Scholar

Ohtsuki C., Miyazaki T., Tanihara M.: Development of bioactive organic–inorganic hybrid for bone substitutes. Mater. Sci. Eng., C 22 (2002), 27-34. Search in Google Scholar

Pramanik N., Mishra D., Banerjee I., Maiti T. K., Bhargava P., Pramanik P.: Chemical Synthesis, Characterization, and Biocompatibility Study of Hydroxyapatite/Chitosan Phosphate Nanocomposite for Bone Tissue Engineering Applications. International Journal of Biomaterials (2009), 1-8. 10.1155/2009/512417281409320130797Search in Google Scholar

Mozafari M., Moztarzadeh F., Rabiee M., Azami M., Maleknia S., Tahriri M., Moztarzadeh Z., Nezafati N.: Development of macroporous nanocomposite scaffolds of gelatin/bioactive glass prepared through layer solvent casting combined with lamination technique for bone tissue engineering. Ceram. Int. 36 (2010), 2431-2439. Search in Google Scholar

Nistor M. T., Chiriac A. P., Vasile C., Verestiuc L., Nita L. E.: Synthesis of hydrogels based on poly(NIPAM) inserted into collagen sponge. Colloids Surf., B 87 (2011), 382-390. Search in Google Scholar

Kikuchi M., Itoh S., Ichinose S., Shinomiya K., Tanaka J.: Self-organization mechanism in a bone-like hydroxyapatite/collagen nanocomposite synthesized in vitro and its biological reaction in vivo. Biomaterials 22 (2001), 1705-1711. Search in Google Scholar

Wahl D. A., Sachlos E., Liu C., Czernuszka J. T.: Controlling the processing of collagen-hydroxyapatite scaffolds for bone tissue engineering. J. Mater. Sci.: Mater. Med. 18 (2007), 201-209. Search in Google Scholar

Pielichowska K., Blazewicz S.: Bioactive Polymer/Hydroxyapatite (Nano)composites for Bone Tissue Regeneration. Adv. Polym. Sci. 232 (2010), 97-207. Search in Google Scholar

Rhee S. H., Seutsugu Y., Tanaka J.: Biomimetic configurational arrays of hydroxyapatite nanocrystals on bio-organics. Biomaterials 22 (2001), 2843-2847. Search in Google Scholar

Zhao H., Ma L., Gao Ch., Shen J.: Fabrication and properties of mineralized collagen-chitosan/hydroxyapatite scaffolds. Polym. Adv. Technol. 19 (2008), 1590-1596.Search in Google Scholar

eISSN:
2083-4799
ISSN:
1730-2439
Idioma:
Inglés
Calendario de la edición:
4 veces al año
Temas de la revista:
Materials Sciences, Functional and Smart Materials