Acceso abierto

Detailed protocol for an accurate non-destructive direct dating of tooth enamel fragment using Electron Spin Resonance

Geochronometria's Cover Image
Geochronometria
Special Issue Title: Proceedings of the 3rd Asia Pacific Conference on Luminescence and Electron Spin Resonance Dating Okayama, Japan, 2012

Cite

[1] Aragno D, Fattibene P and Onorie S, 2001. Mechanically induced EPR signals in tooth enamel. Applied Radiation and Isotopes 55(3): 375–382, DOI 10.1016/S0969-8043(01)00078-1. http://dx.doi.org/10.1016/S0969-8043(01)00078-110.1016/S0969-8043(01)00078-1Search in Google Scholar

[2] Bouchez R, Cox R, Hervé A, Lopez-Carranza E, Ma JL, Piboule M, Poupeau G and Rey P, 1988. Q-Band ESR studies of fossil teeth: consequences for ESR dating. Quaternary Science Reviews 7(3–4): 497–501, DOI 10.1016/0277-3791(88)90052-2. http://dx.doi.org/10.1016/0277-3791(88)90052-210.1016/0277-3791(88)90052-2Search in Google Scholar

[3] Brik AS, Haskell EH, Scherbina OI, Brik VB and Atamanenko ON, 1998. Alignment of CO2 — radicals of tooth enamel with heating. Mineralogy Journal 20: 26–36. Search in Google Scholar

[4] Brik A, Haskell E, Brik V, Scherbina O and Atamanenko ON, 2000a. Anisotropy effects of EPR signals and mechanisms of mass transfer in tooth enamel and bones. Applied Radiation and Isotopes 52(5): 1077–1083, DOI 10.1016/S0969-8043(00)00047-6. http://dx.doi.org/10.1016/S0969-8043(00)00047-610.1016/S0969-8043(00)00047-6Search in Google Scholar

[5] Brik AS, Rosenfeld LG, Haskell EH, Kenner GH and Brik VB, 2000b. Formation mechanism and localization places of CO2-radicals in tooth enamel. Mineralogie Journal 22: 57–67. Search in Google Scholar

[6] Bodin T and Sambridge M, 2009. Seismic tomography with the reversible jump algorithm. Geophysical Journal International 178(3): 1411–1436, DOI 10.1111/j.1365-246X.2009.04226.x. http://dx.doi.org/10.1111/j.1365-246X.2009.04226.x10.1111/j.1365-246X.2009.04226.xSearch in Google Scholar

[7] Callens FJ, Verbeeck RMH, Naessens DE, Matthys PFA and Boesman ER, 1989. Effect of carbonate content on the ESR spectrum near g=2 of carbonated calciumapatites synthetized from aqueous media. Calcified Tissue International 44(2): 114–124, DOI 10.1007/BF02556470. http://dx.doi.org/10.1007/BF0255647010.1007/BF02556470Search in Google Scholar

[8] Callens F, Moens P and Verbeeck R, 1995. An EPR study of intact and powdered human tooth enamel dried at 400°C. Calcified Tissue International 56(6): 543–548, DOI 10.1007/BF00298587. http://dx.doi.org/10.1007/BF0029858710.1007/BF00298587Search in Google Scholar

[9] Callens F, Vanhaelewyn G, Matthys P and Boesman E, 1998. EPR of carbonate derived radicals: applications in dosimetry, dating and detection of irradiated food. Applied Magnetic Resonance 14(2–3): 235–254, DOI 10.1007/BF03161892. http://dx.doi.org/10.1007/BF0316189210.1007/BF03161892Search in Google Scholar

[10] Černy V, 1985. A thermodynamical approach to the travelling salesman problem: an efficient simulation algorithm. Journal of Optimization Theory and Applications. 45(1): 41–51, DOI 10.1007/BF00940812. http://dx.doi.org/10.1007/BF0094081210.1007/BF00940812Search in Google Scholar

[11] Desrosiers MF, Simic MG, Eichmiller FC, Johnston AD and Boen RL, 1989. Mechanically-induced generation of radicals in tooth enamel. Applied Radiation and Isotopes 40(10–12): 1195–1197, DOI 10.1016/0883-2889(89)90062-2. 10.1016/0883-2889(89)90062-2Search in Google Scholar

[12] Driessens P, 1980. The mineral in bones, dentine and enamel. Bulletin Des Sociétés Chimiques Belges 89: 663–687. http://dx.doi.org/10.1002/bscb.1980089081110.1002/bscb.19800890811Search in Google Scholar

[13] Grün R, 1989. Electron spin resonance (ESR) dating. Quaternary International 1: 65–109, DOI 10.1016/1040-6182(89)90010-4. http://dx.doi.org/10.1016/1040-6182(89)90010-410.1016/1040-6182(89)90010-4Search in Google Scholar

[14] Grün R, 1995. Semi non-destructive, single aliquot ESR dating. Ancient TL 13: 3–7. Search in Google Scholar

[15] Grün R, 1998. Dose determination on fossil tooth enamel using spectrum deconvolution with Gaussian and Lorentzian peak shapes. Ancient TL 16: 51–55. Search in Google Scholar

[16] Grün R, 2006. A simple method for the rapid assessment of the qualitative ESR response of fossil samples to laboratory irradiation. Radiation Measurements 41(6): 682–689, DOI 10.1016/j.radmeas.2006.04.009. http://dx.doi.org/10.1016/j.radmeas.2006.04.00910.1016/j.radmeas.2006.04.009Search in Google Scholar

[17] Grün R and Schwarcz HP, 1987. Some problems on ESR dating of bones. Ancient TL 5(2) 1–9. Search in Google Scholar

[18] Grün R, Maroto J, Eggins S, Stringer C, Robertson S, Taylor L, Mortimer G and McCulloch M, 2006. ESR and Useries analyses of enamel and dentine fragments of the Banyoles mandible. Journal of Human Evolution 50(3): 347–358, DOI 10.1016/j.jhevol.2005.10.001. http://dx.doi.org/10.1016/j.jhevol.2005.10.00110.1016/j.jhevol.2005.10.001Search in Google Scholar

[19] Grün R, Joannes-Boyau R and Stringer C, 2008. Two types of CO2-radicals threaten the fundamentals of ESR dating of tooth enamel. Quaternary Geochronology 3(1–2): 150–172, DOI 10.1016/j.quageo.2007.09.004. http://dx.doi.org/10.1016/j.quageo.2007.09.00410.1016/j.quageo.2007.09.004Search in Google Scholar

[20] Grün R, Mahat R and Joannes-Boyau R, 2012. Ionization efficiencies of alanine dosimeters and tooth enamel irradiated by gamma and X-ray sources. Radiation Measurements 47(9): 665–667, DOI 10.1016/j.radmeas.2012.03.018. http://dx.doi.org/10.1016/j.radmeas.2012.03.01810.1016/j.radmeas.2012.03.018Search in Google Scholar

[21] Hillson S, 1986. Teeth, Cambridge Manuals in Archaeology, Cambridge University Press, Cambridge. Search in Google Scholar

[22] Ikeya M and Miki T, 1980. Electron spin resonance dating of animal and human bones. Science 215: 1392–1393, DOI 10.1126/science.215.4538.1392. http://dx.doi.org/10.1126/science.215.4538.139210.1126/science.215.4538.1392Search in Google Scholar

[23] Ishchenko SS, Vorona IP, Okulov SM and Baran NP, 2002. 13C hyper-fine interactions of CO2-in irradiated tooth enamel as studied by EPR. Applied Radiation and Isotopes 56(6): 815–819, DOI 10.1016/S0969-8043(02)00049-0. http://dx.doi.org/10.1016/S0969-8043(02)00049-010.1016/S0969-8043(02)00049-0Search in Google Scholar

[24] Joannes-Boyau R and Grün R, 2009. Thermal behavior of oriented and non-oriented CO2-radicals in tooth enamel. Radiation Measurements 44(5–6), 505–511, DOI 10.1016/j.radmeas.2009.02.010. http://dx.doi.org/10.1016/j.radmeas.2009.02.01010.1016/j.radmeas.2009.02.010Search in Google Scholar

[25] Joannes-Boyau R, Bodin T and Grün R, 2010a. Decomposition of the angular ESR spectra of fossil tooth enamel fragments. Radiation Measurements 45(8): 887–898, DOI 10.1016/j.radmeas.2010.06.029. http://dx.doi.org/10.1016/j.radmeas.2010.06.02910.1016/j.radmeas.2010.06.029Search in Google Scholar

[26] Joannes-Boyau R, Grün R, Bodin T, 2010b. Decomposition of the laboratory irradiation component of angular ESR spectra of fossil tooth enamel fragments. Applied Radiation and Isotopes 68(9): 1798–1808, DOI 10.1016/j.apradiso.2010.03.015. http://dx.doi.org/10.1016/j.apradiso.2010.03.01510.1016/j.apradiso.2010.03.01520409724Search in Google Scholar

[27] Joannes-Boyau R and Grün R, 2010. Decomposition of UV induced ESR spectra in enamel fragments of a modern and a fossil tooth. Ancient TL 28: 23–34. Search in Google Scholar

[28] Joannes-Boyau R and Grün R, 2011a. Decomposition of β-induced ESR spectra of fossil tooth enamel. Radiation Physics and Chemistry 80(3): 335–342, DOI 10.1016/j.radphyschem.2010.10.002. http://dx.doi.org/10.1016/j.radphyschem.2010.10.00210.1016/j.radphyschem.2010.10.002Search in Google Scholar

[29] Joannes-Boyau R and Grün R, 2011b. A comprehensive model for CO2-radicals in fossil tooth enamel: implications for ESR dating. Quaternary Geochronology 6(1): 82–97, DOI 10.1016/j.quageo.2010.09.001. http://dx.doi.org/10.1016/j.quageo.2010.09.00110.1016/j.quageo.2010.09.001Search in Google Scholar

[30] Johnson C, 1998. Biology of Human Dentition. Illinois University, Chicago College of Dentistry. Search in Google Scholar

[31] Kirkpatrick S, Gelatt CD and Vecchi MP, 1983. Optimization by Simulated Annealing. Science 220: 671–680, DOI 10.1126/science.220.4598.671. http://dx.doi.org/10.1126/science.220.4598.67110.1126/science.220.4598.671Search in Google Scholar

[32] Lester KS and Koeningswald WV, 1989. Crystallite orientation discontinuities and the evolution of mammalian enamel or, when is a prism? Scanning Microscopy 3: 645–663. Search in Google Scholar

[33] Macho GA, Jiang Y and Spears IR, 2003. Enamel micro structure — a truly three-dimensional structure. Journal of Human Evolution 45(1): 81–90, DOI 10.1016/S0047-2484(03)00083-6. http://dx.doi.org/10.1016/S0047-2484(03)00083-610.1016/S0047-2484(03)00083-6Search in Google Scholar

[34] Metropolis N, Rosenbluth AW, Rosenbluth MN, Teller AH and Teller E, 1953. Equations of state calculations by fast computing machines. Journal of Chemical Physics 21(6): 1087–1092, DOI 10.1063/1.1699114. http://dx.doi.org/10.1063/1.169911410.1063/1.1699114Search in Google Scholar

[35] Mosegaard K and Sambridge M, 2002. Monte Carlo analysis of inverse problems. Inverse Problems 18: R29, DOI 10.1088/0266-5611/18/3/201. http://dx.doi.org/10.1088/0266-5611/18/3/20110.1088/0266-5611/18/3/201Search in Google Scholar

[36] Schramm DU and Rossi AM, 2000. Electron spin resonance (ESR) studies of CO-2 radicals in irradiated A and B-type carbonate-containing apatites. Applied Radiation and Isotopes 52(5): 1085–1091, DOI 10.1016/S0969-8043(00)00046-4. http://dx.doi.org/10.1016/S0969-8043(00)00046-410.1016/S0969-8043(00)00046-4Search in Google Scholar

[37] Scherbina OI and Brik AB, 2000. Temperature stability of carbonate groups in tooth enamel. Applied Radiation and Isotopes 52(5): 1071–1075, DOI 10.1016/S0969-8043(00)00048-8. http://dx.doi.org/10.1016/S0969-8043(00)00048-810.1016/S0969-8043(00)00048-8Search in Google Scholar

[38] Smith TM and Tafforeau P, 2008. New Visions of Dental Tissue Research: Tooth Development, Chemistry, and Structure. Evolutionary Anthropology 17(5): 213–226, DOI 10.1002/evan.20176. http://dx.doi.org/10.1002/evan.2017610.1002/evan.20176Search in Google Scholar

[39] Stoll S and Schweiger A, 2006. EasySpin, a comprehensive software package for spectral simulation and analysis in EPR. Journal of Magnetic Resonance 178(1): 42–55, DOI 10.1016/j.jmr.2005.08.013. http://dx.doi.org/10.1016/j.jmr.2005.08.01310.1016/j.jmr.2005.08.01316188474Search in Google Scholar

[40] Stoll S and Schweiger A, 2007. EasySpin: Simulating cw ESR spectra. Biological Magnetic Resonance 27: 299–321. Search in Google Scholar

[41] Vanhaelewyn G, Callens F, Grün R, 2000a. EPR spectrum deconvolution and dose assessment of fossil tooth enamel using maximum likelihood common factor analysis. Applied Radiation and Isotopes 52(5): 1317–1326, DOI 10.1016/S0969-8043(00)00090-7. http://dx.doi.org/10.1016/S0969-8043(00)00090-710.1016/S0969-8043(00)00090-7Search in Google Scholar

[42] Vanhaelewyn GCAM, Morent RA, Callens FJ, Matthys PFAE, 2000b. X- and Q-band electron paramagnetic resonance of CO2-in hydroxylapatite single crystals. Radiation Research 154 (4): 467–472. http://dx.doi.org/10.1667/0033-7587(2000)154[0467:XAQBEP]2.0.CO;2Search in Google Scholar

[43] Vorona IP, Ishchenko SS, Baran NP, Petrenko TL and Rudko VV, 2006. Evidence of annealing-induced transformation of CO2-radicals in irradiated tooth enamel. Radiation Measurements 41(5): 577–581, DOI 10.1016/j.radmeas.2005.12.002. http://dx.doi.org/10.1016/j.radmeas.2005.12.00210.1016/j.radmeas.2005.12.002Search in Google Scholar

[44] Vorona IP, Baran NP, Ishchenko SS and Rudko VV, 2007. Separation of the contributions from γ- and UV-radiation to the EPR spectra of tooth enamel plates. Applied Radiation and Isotopes 65(5): 553–556, DOI 10.1016/j.apradiso.2006.12.001. http://dx.doi.org/10.1016/j.apradiso.2006.12.00110.1016/j.apradiso.2006.12.00117258465Search in Google Scholar

[45] Yokoyama Y, Quaegebeur JP, Bibron R, Leger C, Nguyen HV and Poupeau G, 1981. Electron spin resonance (ESR) dating of fossil bones of the Caune of l’Arago at Tautavel. Lumley H (de) et Labeyrie J eds, pp.437–455. Search in Google Scholar

eISSN:
1897-1695
Idioma:
Inglés
Calendario de la edición:
Volume Open
Temas de la revista:
Geosciences, other