Acceso abierto

Underwater Navigation System Based on Doppler Shift – Measurements and Error Estimations


Cite

1. Kochanska I. (2020): Assessment of Wide-Sense Stationarity of an Underwater Acoustic Channel Based on a Pseudo-Random Binary Sequence Probe Signal. Applied Sciences, 10(4), 1221; doi: 10.3390/app10041221.10.3390/app10041221Search in Google Scholar

2. Kochanska I., Nissen I., Marszal J. (2018): A method for testing the wide-sense stationary uncorrelated scattering assumption fulfillment for an underwater acoustic channel. Journal of the Acoustical Society of America, 143, EL116; doi: 10.1121/1.5023834.10.1121/1.502383429495734Search in Google Scholar

3. Marszal J. (2014): Experimental Investigation of Silent Sonar. Archives of Acoustics, 39(1), 103-115.Search in Google Scholar

4. Marszal J., Salamon R. (2010): Multistatic Doppler Sonar for Man-Made Lakes and Water-Power Plants Antiterroristic Protection. Proc. of the 10th European Conference on Underwater Acoustics, Istanbul 2010, pp. 1333-1339.Search in Google Scholar

5. Marszal J., Salamon R. (2012): Distance Measurement Errors in Silent FM-CW Sonar with Matched Filtering. Metrology and Measurement Systems, XIX(2) 321-332.10.2478/v10178-012-0027-6Search in Google Scholar

6. Milne P. H. (1983): Underwater acoustic positioning systems, Gulf Publishing Company.Search in Google Scholar

7. Ostrowski Z. J. (2014): The Doppler effect in a bistatic system for determining the position of moving targets. Hydroacoustics, 17, 225-234.Search in Google Scholar

8. Ostrowski Z. J. (2015): Receiver of Doppler multistatic system for moving target detection and tracking. Hydroacoustics, 18, 141-152.Search in Google Scholar

9. Ostrowski Z. J. (2015): Doppler Multistatic System for Moving Target Detection and Tracking in Water [in Polish]. In: Progress of Acoustics, ed. K. J. Opieliński, Polish Acoustical Society, Wrocław, pp. 631-642.Search in Google Scholar

10. Ostrowski Z. J., Marszal J., Salamon R. (2018): Underwater Navigation System Based on Doppler Shifts of a Continuous Wave. Proc. 2018 Joint Conference – Acoustics, Ustka 2018, IEEE Xplore Digital Library, pp. 240-245.10.1109/ACOUSTICS.2018.8502410Search in Google Scholar

11. Salamon R. (2012): Doppler effect in hydrolocation systems [in Polish]. Proc. 59th Open Seminar on Acoustics, Poznań - Boszkowo, pp. 23-28.Search in Google Scholar

12. Salamon R., Marszal J. (2010): Doppler estimation method for moving target location. Hydroacoustics, 13, 225-234.Search in Google Scholar

eISSN:
2083-7429
Idioma:
Inglés
Calendario de la edición:
4 veces al año
Temas de la revista:
Engineering, Introductions and Overviews, other, Geosciences, Atmospheric Science and Climatology, Life Sciences