Acceso abierto

The dependence of inhomogeneity correction factors on photon beam quality index performed with the Anisotropic Analytical Algorithm


Cite

1. Technical Report Series (TRS) No. 430, Commissioning and Quality Assurance of Computerized Planning Systems for Radiation Treatment of Cancer. International Atomic Energy Agency (IAEA); 2004.Search in Google Scholar

2. Papanikolaou N, Battista JJ, Boyer AL, et al. Report of the AAPM Task Group No. 85: Tissue inhomogeneity corrections for megavoltage photon beams. Madison WI: Medical Physics Publishing; 2004.10.37206/86Search in Google Scholar

3. Robinson D. Inhomogeneity correction and the analytic anisotropic algorithm. J Appl Clin Med Phys. 2008;9(2):112-122. doi: 10.1120/jacmp. v9i2.2786.10.1120/jacmp.v9i2.2786Search in Google Scholar

4. Ding W, Johnston PN, Wong TPY, Bubb IF. Investigation of photon beam models in heterogeneous media of modern radiotherapy. Australas Phys Eng Sci. 2004;27:39-48. doiOI: 10.1007/BF0317837510.1007/BF03178375Search in Google Scholar

5. Carrasco P, Jornet N, Duch M, et al. Comparison of dose calculation algorithms in phantoms with lung equivalent heterogeneities under conditions of lateral electronic disequilibrium. Med Phys. 2004;31:2899-2911. doi: 10.1118/1.178893210.1118/1.1788932Search in Google Scholar

6. Krieger T, Sauer OA. Monte Carlo versus pencil-beam-/collapsed-cone-dose calculation in a heterogeneous multi-layer phantom. Phys Med Biol. 2005;50(5):859-868. doi: 10.1088/0031-9155/50/5/01010.1088/0031-9155/50/5/010Search in Google Scholar

7. Van Esch A, Tillikainen L, Pyykkonen, et al. Testing of the analytical anisotropic algorithm for photon dose calculation. Med Phys. 2006;33(11):4130-4148. doi: 10.1118/1.235833310.1118/1.2358333Search in Google Scholar

8. Oyewale S. Dose prediction accuracy of collapsed cone convolution superposition algorithm in a multi-layer inhomogenous phantom. Int J Cancer Ther Oncol. 2013;1(1). doi: 10.14319/ijcto.0101.610.14319/ijcto.0101.6Search in Google Scholar

9. Hunt MA, Desobry GE, Fowble B, Coia LR. Effect of low-density lateral interfaces on soft-tissue doses. Int J Radiat Oncol Phys. 1997;37(2):475-482.10.1016/S0360-3016(96)00499-3Search in Google Scholar

10. Stathakis S, Kappas C, Theodorou K, et al. An inhomogeneity correction algorithm for irregular fields of high-energy photon beams based on Clarkson integration and the 3D beam subtraction method. J Appl Clin Med Phys. 2006;7(1):1-13.10.1120/jacmp.v7i1.2042Search in Google Scholar

11. Ono K, Endo S, Tanaka K, et al. Dosimetric verification of the anisotropic analytical algorithm in lung equivalent heterogeneities with and without bone equivalent heterogeneities. Med Phys. 2010;37(8):4456-4463.10.1118/1.3464748Search in Google Scholar

12. el-Khatib EE, Evans M, Pla M, Cunningham JR. Evaluation of lung dose correction methods for photon irradiations of thorax phantoms. Int J Radiat Oncol Biol Phys. 1989;17:871-878.10.1016/0360-3016(89)90081-3Search in Google Scholar

13. Orton CG, Chungbin S, Klein EE, et al. Study of lung density corrections in a clinical trial (RTOG 88-08). Radiation Therapy Oncology Group. Int J Radiat Oncol Biol Phys. 1989;41(4):787-794. doi: 10.1016/S0360-3016(98)00117-510.1016/S0360-3016(98)00117-5Search in Google Scholar

14. Akhtaruzzaman M, Kukolowicz P. Dependence of Tissue Inhomogeneity Correction Factors on Nominal Photon Beam Energy. NUKLEONIKA. 2018;63(1):3-7. doi: 10.1515/nuka-2018-000110.1515/nuka-2018-0001Search in Google Scholar

15. Gerbi BJ. A mathematical expression for %DD accurate from Co-60 to 24 MV. Med Phys. 1991;18(4):724-726. doi: 10.1118/1.59666610.1118/1.596666Search in Google Scholar

16. Podgorsak EB. Radiation Oncology Physics: a handbook for teachers and students. International Atomic Energy Commission (IAEA), Vienna; 2005.Search in Google Scholar

17. Technical Report Series (TRS) No. 398. Absorbed Dose Determination in External Beam Radiotherapy. International Code of Practice for Dosimetry Based on Standards of Absorbed dose to Water. International Atomic Energy Agency (IAEA); 2000.Search in Google Scholar

18. ICRU. ICRU Report No. 42: Use of computers in external beam radiotherapy procedures with high-energy photons and electrons. Maryland, USA; 1987.Search in Google Scholar

19. Ekstrand KE, Barnes WH. Pitfalls in the use of high energy X rays to treat tumors in the lung. Int J Radiat Oncol Biol Phys. 1990;8(1):249-252.10.1016/0360-3016(90)90290-ZSearch in Google Scholar

20. Hunt MA, Desobry GE, Fowble B, Coia LR. Effect of low-density lateral interfaces on soft-tissue doses. Int J Radiat Oncol Biol Phys. 1997;37(2):475-482.10.1016/S0360-3016(96)00499-3Search in Google Scholar

21. Kornelsen RO, Young ME. Changes in the dose-profile of a 10 MV x-ray beam within and beyond low-density material. Med Phys. 1982;9:114-116. doi: 10.1118/1.59505910.1118/1.595059Search in Google Scholar

22. Rice RK, Mijnheer BJ, Chin LM. Benchmark measurements for lung dose corrections for X-ray beams. Int J Radiat Oncol Biol Phys. 1988;15(2);399-409. doi: 10.1016/S0360-3016(98)90022-010.1016/S0360-3016(98)90022-0Search in Google Scholar

23. Yorke E, Harisiadis L, Wessels B, et al. Dosimetric considerations in radiation therapy of coin lesions of the lung. Int J Radiat Oncol Biol Phys. 1996;34(2):481–487.10.1016/0360-3016(95)02036-5Search in Google Scholar

24. Young ME, Kornelsen RO. Dose corrections for low-density tissue inhomogeneities and air channels for 10-MV x rays. Med Phys. 1983;10:450-455.10.1118/1.5953926888356Search in Google Scholar

25. Van Esch A, Tillikainen L, Pyykkonen J, et al. Testing of the analytical anisotropic algorithm for photon dose calculation. Med Phys. 2006;33(11):4130-4148.10.1118/1.235833317153392Search in Google Scholar

eISSN:
1898-0309
Idioma:
Inglés
Calendario de la edición:
4 veces al año
Temas de la revista:
Medicine, Biomedical Engineering, Physics, Technical and Applied Physics, Medical Physics