Acceso abierto

Bismuth-based nanoparticles as radiosensitizer in low and high dose rate brachytherapy


Cite

[1] Hwang C, Kim JM, Kim J. Influence of concentration, nanoparticle size, beam energy, and material on dose enhancement in radiation therapy. J Radiat Res. 2017;58:405-411.10.1093/jrr/rrx009Search in Google Scholar

[2] Hatano Y, Katsumura Y, Mozumder A. Charged Particle and Photon Interactions with Matter: Recent Advances, Applications and Interfaces. CRC Press, Boca Raton, 2010.10.1201/b10389Search in Google Scholar

[3] McMahon SJ, Hyland WB, Muir MF, et al. Biological consequences of nanoscale energy deposition near irradiated heavy atom nanoparticles. Sci Rep. 2011;1:18.10.1038/srep00018Search in Google Scholar

[4] Khoo AM, Cho SH, Reynoso FJ, et al. Radiosensitization of Prostate Cancers In Vitro and In Vivo to Erbium-filtered Orthovoltage X-rays Using Actively Targeted Gold Nanoparticles. Scientific Reports. 2017;7:18044.10.1038/s41598-017-18304-ySearch in Google Scholar

[5] Sung W, Schuemann J. Energy optimization in gold nanoparticle enhanced radiation therapy. Phys Med Biol. 2018;63(13):135001.10.1088/1361-6560/aacab6Search in Google Scholar

[6] Rajaee A, Wensheng X, Zhao L, et al. Multifunctional Bismuth Ferrite Nanoparticles as Magnetic Localized Dose Enhancement in Radiotherapy and Imaging. J Biomed Nanotechnol. 2018;14(6):1159-1168.10.1166/jbn.2018.2553Search in Google Scholar

[7] Kuncic Z, Lacombe S. Nanoparticle radio-enhancement: principles, progress and application to cancer treatment. Phys Med Biol. 2018;63(2):27.10.1088/1361-6560/aa99ceSearch in Google Scholar

[8] Porcel E, Liehn S, Remita H, et al. Platinum nanoparticles: a promising material for future cancer therapy? Nanotechnology. 2010;21(8):85103.10.1088/0957-4484/21/8/085103Search in Google Scholar

[9] Ma M, Huang Y, Chen H, et al. Bi2S3-embedded mesoporous silica nanoparticles for efficient drug delivery and interstitial radiotherapy sensitization Biomaterials. 2015;37:447-455.10.1016/j.biomaterials.2014.10.001Search in Google Scholar

[10] Deng J, Xu S, Hu W, et al. Tumor targeted, stealthy and degradable bismuth nanoparticles for enhanced X-ray radiation therapy of breast cancer. Biomaterials. 2018;154:24-33.10.1016/j.biomaterials.2017.10.048Search in Google Scholar

[11] Yao MH, Ma M, Chen Y, et al. Multifunctional Bi2S3/PLGA nanocapsule for combined HIFU/radiation therapy. Biomaterials. 2014;35(28):8197-8205.10.1016/j.biomaterials.2014.06.010Search in Google Scholar

[12] Xie H, Li Z, Sun Z, et al. Metabolizable Ultrathin Bi2Se3 Nanosheets in Imaging-Guided Photothermal Therapy. Small. 2016;12(30): 4136-4145.10.1002/smll.201601050Search in Google Scholar

[13] Gorbach SL. Bismuth therapy in gastrointestinal-diseases. Gastroenterology. 1990;99(3):863-875.10.1016/0016-5085(90)90983-8Search in Google Scholar

[14] Bravo LE, Realpe JL, Campo C, et al. Effects of acid suppression and bismuth medications on the performance of diagnostic tests for Helicobacter pylori infection. Am J Gastroenterol. 1999;94(9):2380-2383.10.1111/j.1572-0241.1999.01361.xSearch in Google Scholar

[15] Wei B, Zhang X, Zhang C, et al. Facile Synthesis of Uniform-Sized Bismuth Nanoparticles for CT Visualization of Gastrointestinal Tract in Vivo. Acs Applied Mater Interfaces. 2016;8(20):12720-12726.10.1021/acsami.6b03640Search in Google Scholar

[16] Bi H, He F, Dong Y, et al. Bismuth Nanoparticles with “Light” Property Served as a Multifunctional Probe for X-ray Computed Tomography and Fluorescence Imaging. Chem Mat. 2018;30(10):3301-3307.10.1021/acs.chemmater.8b00565Search in Google Scholar

[17] Ai K, Liu Y, Liu J,. Large-Scale Synthesis of Bi2S3 Nanodots as a Contrast Agent for In Vivo X-ray Computed Tomography Imaging. Adv Mater. 2011;9(23):4886-4891.10.1002/adma.201103289Search in Google Scholar

[18] Cheng X, Yong Y, Dai Y, et al. Enhanced Radiotherapy using Bismuth Sulfide Nanoagents Combined with Photo-thermal Treatment. Theranostics. 2017;7(17):4087-4098.10.7150/thno.20548Search in Google Scholar

[19] Liu J, Zheng X, Gu Z, et al. Bismuth sulfide nanorods as a precision nanomedicine for in vivo multimodal imaging-guided photothermal therapy of tumor. Nanomedicine-Nanotechnology Biology and Medicine. 2016;12(2):486-487.10.1016/j.nano.2015.12.116Search in Google Scholar

[20] Taha E, Djouider F, Banoqitah E. Monte Carlo simulations for dose enhancement in cancer treatment using bismuth oxide nanoparticles implanted in brain soft tissue. Australas Phys Eng Sci Med. 2018;41(2):363-370.10.1007/s13246-018-0633-zSearch in Google Scholar

[21] Du F, Lou J, Jiang R, et al. Hyaluronic acid-functionalized bismuth oxide nanoparticles for computed tomography imaging-guided radiotherapy of tumor. Int J Nanomedicine. 2017;12:5973-5992.10.2147/IJN.S130455Search in Google Scholar

[22] Stewart C, Konstantinov K, McKinnon S, et al. First proof of bismuth oxide nanoparticles as efficient radiosensitisers on highly radioresistant cancer cells. Phys Med. 2016;32(11):1444-1452.10.1016/j.ejmp.2016.10.015Search in Google Scholar

[23] Hossain M, Su M. Nanoparticle Location and Material-Dependent Dose Enhancement in X-ray Radiation Therapy. J Phys Chem C. 2012;116(43):23047-23052.10.1021/jp306543qSearch in Google Scholar

[24] Karaiskos P, Papagiannis P, Sakelliou L, et al. Monte Carlo dosimetry of the selectSeed I-125 interstitial brachytherapy seed.Med Phys. 2011;28(8):1753-1760.10.1118/1.1384460Search in Google Scholar

[25] Medich DC, Tries MA, Munro JJ. Monte Carlo characterization of an ytterbium-169 high dose rate brachytherapy source with analysis of statistical uncertainty. Med Phys. 2006;33(1):163-172.10.1118/1.2147767Search in Google Scholar

[26] Paro AD, Hossain M, Webster TJ, Su M. Monte Carlo and analytic simulations in nanoparticle-enhanced radiation therapy. Int J Nanomedicine. 2016;11:4735-4741.10.2147/IJN.S114025Search in Google Scholar

[27] Ngwa W, Makrigiorgos GM, Berbeco RI. Applying gold nanoparticles as tumor-vascular disrupting agents during brachytherapy: estimation of endothelial dose enhancement. Phys Med Biol. 2010;55(21):6533-6548.10.1088/0031-9155/55/21/013Search in Google Scholar

eISSN:
1898-0309
Idioma:
Inglés
Calendario de la edición:
4 veces al año
Temas de la revista:
Medicine, Biomedical Engineering, Physics, Technical and Applied Physics, Medical Physics