Acceso abierto

The application of ultrafiltration for separation of glycerol solution fermented by bacteria


Cite

1. Gungormusler, M., Gonen, C. & Azbar, N. (2011). Continuous production of 1,3-propanediol using raw glycerol with immobilized Clostridium beijerinckii NRRL B-593 in comparison to suspended culture, Bioprocess Biosyst. Eng. 34, 727-733. DOI: 10.1007/s00449-011-0522-2.10.1007/s00449-011-0522-2Search in Google Scholar

2. Liu, B., Christiansen, K., Parnas, R., Xu, Z. & Li, B. (2013). Optimizing the production of hydrogen and 1,3-propanediol in anaerobic fermentation of biodiesel glycerol, Int. J. HydrogenEnergy, 383, 196-205. DOI: 10.1016/j.ijhydene.2012.12.135.10.1016/j.ijhydene.2012.12.135Search in Google Scholar

3. Leja, K., Czaczyk, K. & Myszka, K. (2011). The use of microorganisms in 1,3-Propanediol production, Afr. J. Microbiol. Res., 5 (26), 4652-4658. DOI: 10.5897/AJMR11.847.10.5897/AJMR11.847Search in Google Scholar

4. Raynaud, C., Sarcabal, P., Meynial-Salles, I., Croux, Ch. & Soucaille, P. (1993). Molecular characterization of the 1,3-propanediol (1,3-PD) operon of Clostridium butyricum, Appl. Microbiol. Biotechnol., 38, 453-457. DOI: 10.1073_pnas.0734105100.Search in Google Scholar

5. Barbirato, F., Himmi, El H., Conte, T. & Bories, A. (1998). 1,3-propanediol production by fermentation: An interesting way to valorize glycerin from the ester and ethanol industries, Ind. Crops Prod., 7, 281-289. DOI: 10.1016/S0926-6690(97)00059-9.10.1016/S0926-6690(97)00059-9Search in Google Scholar

6. Metsoviti, M., Zeng, An.P., Koutinas, A.A. & Papanikolaou, S. (2013). Enhanced 1,3-propanediol production by a newly isolated Citrobacter freundii strain cultivated on biodiesel-derived waste glycerol through sterile and non-sterile bioprocesses, J. Biotechnol., 163, 408-418. DOI: 10.1016/j.jbiotec.2012.11.018.10.1016/j.jbiotec.2012.11.01823220217Search in Google Scholar

7. Anand, P. & Saxena, R.K. (2012). A comparative study of solvent-assisted pretreatment of biodiesel derived crude glycerol of growth and 1,3-propanediol production from Citrobacter freundii, New Biotechol., 29, 199-205. DOI: 10.1016/j. nbt.2011.05.010.Search in Google Scholar

8. Boenigk, R., Bowien, S. & Gottschalk, G. (1993). Fermentation of glycerol to 1,3-propanediol in continuous cultures of Citrobacter freundii, Appl. Microbiol. Biotechnol., 38, 453-457. DOI: 10.1007/BF00242936.10.1007/BF00242936Search in Google Scholar

9. Xiu, Z.L. & Zeng, A.P. (2008). Present state and perspective of downstream processing of biologically produced 1,3-propanediol and 2,3-butanediol. Appl. Microbiol. Biotechnol., 78, 917-926. DOI: 10.1007/s00253-008-1387-4.10.1007/s00253-008-1387-418320188Search in Google Scholar

10. Li, Z., Jiang, B., Hang, D. & Xiu, Z. ( 2009). Aqueous two-phase extraction of 1,3-propanediol from glycerol-based fermentation broths, Sep. Purif. Technol., 66, 472-478. DOI: 10.1016/j.seppur.2009.02.009.10.1016/j.seppur.2009.02.009Search in Google Scholar

11. Wu, R.C., Ren, H.J. Xu, Y.Z. & Liu, D.H. (2010). The final recover of salt from 1,3-propanadiol fermentation broth. Sep. Purif. Technol, 73, 122-125. DOI: 10.1016/j.seppur.2010.03.013.10.1016/j.seppur.2010.03.013Search in Google Scholar

12. Annand, P., Saxena, R.K. & Marwah, R.G. (2011). A novel downstream process for 1,3-propanediol from glycerol- -based fermentation, Appl. Microbiol. Biotechnol., 90, 1267-1276. DOI: 10.1007/s00253-011-3161-2.10.1007/s00253-011-3161-221360149Search in Google Scholar

13. Vellenga, E. & Trägårdh, G. (1998). Nanofiltration of combined salt and sugar solutions: coupling between retentions. Desalination, 120, 211-220. DOI: 10.1016/s0011-9164(98)00219-7.10.1016/S0011-9164(98)00219-7Search in Google Scholar

14. Schäfer, A.I., Fane, A.G. & Waite, T.D. (Eds.). (2005). Nanofiltration: Principles and applications. Oxford, UK: Elsevier Advanced Technology.Search in Google Scholar

15. Bonnélye, V., Guey, L. & Del Castillo, J. (2008). UF/ MF as RO pre-treatment: the real benefit, Desalination, 222, 59-65. DOI: 10.1016/j.desal.2007.01.129.10.1016/j.desal.2007.01.129Search in Google Scholar

16. Blanpain-Avet, P., Migdal, J.F. & Bénézech, T. (2009). Chemical cleaning of a tubular ceramic microfiltration membrane fouled with a whey protein concentrate suspension-Characterization of hydraulic and chemical cleanliness, J. Membr. Sci., 337, 153-174. DOI: 10.1016/j.memsci.2009.03.033.10.1016/j.memsci.2009.03.033Search in Google Scholar

17. Blanpain-Avet, P., Migdal, J.F. & Bénézech, T. (2004). The effect of multiple fouling and cleaning cycles on a tubular ceramic microfiltration membrane fouled with z whey protein concentrate, Food Bioproducts Process., 82 (C3), 231-234. DOI: 10.1205/fbio.82.3.231.44182.10.1205/fbio.82.3.231.44182Search in Google Scholar

18. Ogunbiyi, O.O., Miles, N.J. & Hilal, N. (2008). The effects of performance and cleaning cycles of new tubular ceramic microfiltration membrane fouled with a model yeast suspension, Desalination, 220, 273-289. DOI: 10.1016/j.desal.2007.01.034.10.1016/j.desal.2007.01.034Search in Google Scholar

19. Juang, R.S., Chen, H.L. & Chen, Y.S. (2008). Resistance-in-series analysis in cross-flow ultrafiltration of fermentation broths of Bacillus subtilis culture, J. Membr. Sci., 323, 193-200. DOI: 10.1016/j.memsci.2008.06.032.10.1016/j.memsci.2008.06.032Search in Google Scholar

20. Markardij, A., Chen, X.D. & Farid, M.M. (1999). Microfiltration and ultrafiltration of milk: some aspects of fouling and cleaning, Food Bioproducts Process., 77, 107-113. DOI: 10.1205/096030899532394.10.1205/096030899532394Search in Google Scholar

21. Karasu, K., Glennon, N., Lawrence, N.D., Stevens, G.W., O’Connor, J.O., Barber, A.R., Yoshikawa, S. & Kentish, S.E. (2010). A comparison between ceramic and polymeric membrane systems for casein concentrate manufacture, Int. J. Dairy Technol., 63 (2), 284-289. DOI: 10.1111/j.1471-0307.2010.00582.x.10.1111/j.1471-0307.2010.00582.xSearch in Google Scholar

22. Hwang, K.J., Wang, T.T., Iritani, E. & Katagiri, N. (2010). Effect of gel particle softness on the performance of cross-flow microfiltration, J. Membr. Sci., 35, 130-137. DOI: 10.1016/j. memsci.2010.08.043.Search in Google Scholar

23. Kazemimoghadam, M. & Mohammadi, T. (2007). Chemical cleaning of ultrafiltration membranes in the milk industry, Desalination, 204, 213-218. DOI: 10.1016/j.desal.2006.04.030.10.1016/j.desal.2006.04.030Search in Google Scholar

24. Blanpain-Avet, P., Migdal, J.F. & Bénézech, T. (2004). The effect of multiple fouling and cleaning cycles on a tubular ceramic microfiltration membrane fouled with a whey protein concentrate. Membrane performance and cleaning efficiency, Food Bioproducts Process, 82 (C3), 231-243. DOI: 10.1205/ fbio.82.3.231.44182.10.1205/fbio.82.3.231.44182Search in Google Scholar

25. Cabero, M.L., Riera, F.A. & Alvarez, R. (1999). Rinsing of ultrafiltration ceramic membranes fouled with whey proteins: effects on cleaning procedures, J. Membr. Sci. 154, 239-250. DOI: 10.1016/S0376-7388(98)00294-4.10.1016/S0376-7388(98)00294-4Search in Google Scholar

26. Bachin, P., Aimar, P. & Field, R.W. (2006). Critical and sustainable fluxes: Theory, experiments and applications, J. Membr. Sci., 281, 42-69. DOI: 10.1016/j.memsci.2006.04.014.10.1016/j.memsci.2006.04.014Search in Google Scholar

27. Nigam, M.O., Bansal, B. & Chen, X.D. (2008). Fouling and cleaning of whey protein concentrate fouled ultrafiltration membranes, Desalination, 218, 313-322. DOI: 10.1016/j. desal.2007.02.027.Search in Google Scholar

28. Madaeni, S.S. & Mansourpanah, Y. (2004). Chemical cleaning of reverse osmosis membranes fouled by whey, Desalination, 161, 13-24. DOI: 10.1016/S0011-9164(04)90036-7. 10.1016/S0011-9164(04)90036-7Search in Google Scholar

eISSN:
1899-4741
ISSN:
1509-8117
Idioma:
Inglés
Calendario de la edición:
4 veces al año
Temas de la revista:
Industrial Chemistry, Biotechnology, Chemical Engineering, Process Engineering