Acceso abierto

An efficient and automatic ECG arrhythmia diagnosis system using DWT and HOS features and entropy- based feature selection procedure


Cite

Mathers C, Lopez A, Stein C, Fat D, Rao C. Deaths and DiseaseBurden by Cause: Global Burden of Disease Estimates for2001 by World Bank Country Groups. 2005 (revised 2005).MathersCLopezASteinCFatDRaoCDeaths and DiseaseBurden by Cause: Global Burden of Disease Estimates for2001 by World Bank Country Groups2005revised 2005Search in Google Scholar

Thom T, Haase N, Rosamond W, Howard V. J, Rumsfeld J,Manolio T, Zheng Z. J, Flegal K, O’donnell C, Kittner S. HeartDisease and Stroke Statistics – 2006 update a report from theAmerican Heart Association Statistics Committee and StrokeStatistics Subcommittee, Circulation. 2006; 113(6):e85–e151.https://doi.org/10.1161/circulationaha.105.171600ThomTHaaseNRosamondWHowardV. JRumsfeldJManolioTZhengZ. JFlegalKO’donnellCKittnerSHeartDisease and Stroke Statistics – 2006 update a report from theAmerican Heart Association Statistics Committee and StrokeStatistics Subcommittee, Circulation2006;1136e85e151https://doi.org/10.1161/circulationaha.105.17160010.1161/CIRCULATIONAHA.105.17160016407573Search in Google Scholar

Alberdi A, Aztiria A, Basarab, A. Towards an automatic earlystress recognition system for office environments based onmultimodal measurements: a review, J. Biomed. Inform.2016; 59:49–75. https://doi.org/10.1016/j.jbi.2015.11.007AlberdiAAztiriaABasarabATowards an automatic earlystress recognition system for office environments based onmultimodal measurements: a reviewJ. Biomed. Inform2016594975https://doi.org/10.1016/j.jbi.2015.11.00710.1016/j.jbi.2015.11.00726621099Search in Google Scholar

Hadhoud MM, Eladawy MI, Farag, A. Computer aideddiagnosis of cardiac arrhythmias, In: The 2006 InternationalConference on Computer Engineering and Systems, IEEE;2006. https://doi.org/10.1109/icces.2006.320458HadhoudMMEladawyMIFaragAComputer aideddiagnosis of cardiac arrhythmiasThe 2006 InternationalConference on Computer Engineering and SystemsIEEE;2006https://doi.org/10.1109/icces.2006.32045810.1109/ICCES.2006.320458Search in Google Scholar

Shiyovich A, Wolak A, Yacobovich L, Grosbard A, Katz A.Accuracy of diagnosing atrial flutter and atrial fibrillationfrom a surface electrocardiogram by hospital physicians:analysis of data from internal medicine departments, Am. J.Med. Sci., 2010; 340(4):271–275.https://doi.org/10.1097/maj.0b013e3181e73fcfShiyovichAWolakAYacobovichLGrosbardAKatzAAccuracy of diagnosing atrial flutter and atrial fibrillationfrom a surface electrocardiogram by hospital physicians:analysis of data from internal medicine departments, AmJ.Med. Sci20103404271275https://doi.org/10.1097/maj.0b013e3181e73fcf10.1097/MAJ.0b013e3181e73fcf20881756Search in Google Scholar

Wang JS, Chiang WC, Hsu YL, Yang YTC. ECG arrhythmiaclassification using a probabilistic neural network with afeature reduction method. Neurocomputing. 2013; 116:38–45. https://doi.org/10.1016/j.neucom.2011.10.045WangJSChiangWCHsuYLYangYTCECG arrhythmiaclassification using a probabilistic neural network with afeature reduction methodNeurocomputing20131163845https://doi.org/10.1016/j.neucom.2011.10.04510.1016/j.neucom.2011.10.045Search in Google Scholar

Lin CH. Frequency-domain features for ECG beatdiscrimination using grey relational analysis-based classifier.Comput. Math. Appl. 2008; 55(4):680–690.https://doi.org/10.1016/j.camwa.2007.04.035LinCHFrequency-domain features for ECG beatdiscrimination using grey relational analysis-based classifier.ComputMath. Appl2008554680690https://doi.org/10.1016/j.camwa.2007.04.03510.1016/j.camwa.2007.04.035Search in Google Scholar

Arif M. Robust electrocardiogram (ECG) beat classificationusing discrete wavelet transform. Physiol. Meas. 2008;29(5)2008. https://doi.org/10.1088/0967-3334/29/5/003ArifMRobust electrocardiogram (ECG) beat classificationusing discrete wavelet transformPhysiol. Meas20082952008https://doi.org/10.1088/0967-3334/29/5/00310.1088/0967-3334/29/5/00318427158Search in Google Scholar

Gramatikov B, Georgiev I. Wavelets as alternative to short-time Fourier transform in signal-averagedelectrocardiography, Med. Biol. Eng. Comput. 1995;33(3):482–487. https://doi.org/10.1007/bf02510534GramatikovBGeorgievIWavelets as alternative to short-time Fourier transform in signal-averagedelectrocardiography, MedBiol. Eng. Comput1995333482487https://doi.org/10.1007/bf0251053410.1007/BF025105347666698Search in Google Scholar

Li C, Zheng C, Tai C. Detection of ECG characteristic pointsusing wavelet transforms. Biomed. Eng. IEEE Trans. 1995;42(1):21–28. https://doi.org/10.1109/10.362922LiCZhengCTaiCDetection of ECG characteristic pointsusing wavelet transformsBiomed. Eng. IEEE Trans19954212128https://doi.org/10.1109/10.36292210.1109/10.3629227851927Search in Google Scholar

Zhao QB, Zhang LQ. ECG feature extraction and classificationusing wavelet transform and support vector machines. In:Proceedings of the 2005 International Conference on NeuralNetworks and Brain, 2005; 1(3):1089–1092.https://doi.org/10.1109/icnnb.2005.1614807ZhaoQBZhangLQECG feature extraction and classificationusing wavelet transform and support vector machinesIn:Proceedings of the 2005 ternational Conference on NeuralNetworks and Brain, 2005;1310891092https://doi.org/10.1109/icnnb.2005.161480710.1109/ICNNB.2005.1614807Search in Google Scholar

Kantardzic M. Data Mining: Concepts, Models, Methods, andAlgorithms. 2nd ed., Wiley-IEEE Press, 2011.KantardzicMData Mining: Concepts, Models, Methods, andAlgorithms2nd ed., Wiley-IEEE Press201110.1002/9781118029145Search in Google Scholar

Berkaya SK, Uysal AK, Gunal ES, Ergin S, Gunal S, GulmezogluMB. A survey on ECG analysis, Biomed. Signal Process.Control. 2018; 43:216–235.https://doi.org/10.1016/j.bspc.2018.03.003BerkayaSKUysalAKGunalESErginSGunalSGulmezogluMBA survey on ECG analysis, BiomedSignal Process.Control201843216235https://doi.org/10.1016/j.bspc.2018.03.00310.1016/j.bspc.2018.03.003Search in Google Scholar

Martis RJ, Acharya UR, Min LC. ECG beat classification usingPCA, LDA, ICA and discrete wavelet transform. Biomed. SignalProcess. Control. 2013; 8(5):437–448.https://doi.org/10.1016/j.bspc.2013.01.005MartisRJAcharyaURMinLCECG beat classification usingPCA, LDA, ICA and discrete wavelet transformBiomed. SignalProcess. Control201385437448https://doi.org/10.1016/j.bspc.2013.01.00510.1016/j.bspc.2013.01.005Search in Google Scholar

Khalaf AF, Owis MI, Yassine IA. A novel technique for cardiacarrhythmia classification using spectral correlation andsupport vector machines. Expert Syst. Appl. 2015; 42:8361–8368. https://doi.org/10.1016/j.eswa.2015.06.046KhalafAFOwisMIYassineIAA novel technique for cardiacarrhythmia classification using spectral correlation andsupport vector machinesExpert Syst. Appl20154283618368https://doi.org/10.1016/j.eswa.2015.06.04610.1016/j.eswa.2015.06.046Search in Google Scholar

Raj S, Ray KC. ECG signal analysis using DCT-based DOST andPSO optimized SVM. IEEE Trans. Instrum. Meas. 2017;66:470–478. https://doi.org/10.1109/tim.2016.2642758RajSRayKCECG signal analysis using DCT-based DOST andPSO optimized SVMIEEE Trans. Instrum. Meas201766470478https://doi.org/10.1109/tim.2016.264275810.1109/TIM.2016.2642758Search in Google Scholar

El-Saadawy H, Tantawi M, Shedeed HA, Tolba MF. Hybridhierarchical method for electrocardiogram heartbeatclassification. IET Signal Processing. 2018; 12(4):506 –513.https://doi.org/10.1049/iet-spr.2017.0108El-SaadawyHTantawiMShedeedHATolbaMFHybridhierarchical method for electrocardiogram heartbeatclassificationIET Signal Processing2018124506513https://doi.org/10.1049/iet-spr.2017.010810.1049/iet-spr.2017.0108Search in Google Scholar

Martis RJ, Acharya UR, Adeli, H. Current methods inelectrocardiogram characterization. Comput. Biol. Med.2014; 48:133–149.MartisRJAcharyaURAdeliHCurrent methods inelectrocardiogram characterizationComput. Biol. Med20144813314910.1016/j.compbiomed.2014.02.01224681634Search in Google Scholar

Martis RJ, Acharya UR, Mandana K, Ray AK, Chakraborty C.Application of principal component analysis to ECG signals forautomated diagnosis of cardiac health. Expert Syst. Appl.2012; 39(14):11792–11800.https://doi.org/10.1016/j.eswa.2012.04.072MartisRJAcharyaURMandanaKRayAKChakrabortyCApplication of principal component analysis to ECG signals forautomated diagnosis of cardiac healthExpert Syst. Appl201239141179211800https://doi.org/10.1016/j.eswa.2012.04.07210.1016/j.eswa.2012.04.072Search in Google Scholar

Osowski S, Linh TH. ECG beat recognition using fuzzy hybridneural network. IEEE Trans. Biomed. Eng. 2001; 48(11):1265–1271. https://doi.org/10.1109/10.959322OsowskiSLinhTHECG beat recognition using fuzzy hybridneural networkIEEE Trans. Biomed. Eng2001481112651271https://doi.org/10.1109/10.95932210.1109/10.95932211686625Search in Google Scholar

Kutlu Y, Kuntalp DA. multi-stage automatic arrhythmiarecognition and classification system. Comput. Biol. Med.,2011; 41(1):37–45.https://doi.org/10.1016/j.compbiomed.2010.11.003KutluYKuntalpDAmulti-stage automatic arrhythmiarecognition and classification systemComput. Biol. Med20114113745https://doi.org/10.1016/j.compbiomed.2010.11.00310.1016/j.compbiomed.2010.11.00321183163Search in Google Scholar

Das MK, Ari S. ECG beats classification using mixture offeatures. Int. Sch. Res. Not., 2014;178436.https://doi.org/10.1155/2014/178436DasMKAriSECG beats classification using mixture offeaturesInt. Sch. Res. Not2014178436https://doi.org/10.1155/2014/17843610.1155/2014/178436489756927350985Search in Google Scholar

Oster J, Joachim B, Sayadi O, Nemati S, Johnson A, Clifford G.semi-supervised ECG beat classification and novelty detectionbased on switching Kalman filters. IEEE Trans. Biomed. Eng.2015; 62(9):2125-2134.https://doi.org/10.1109/tbme.2015.2402236OsterJJoachimBSayadiONematiSJohnsonACliffordGsemi-supervised ECG beat classification and novelty detectionbased on switching Kalman filtersIEEE Trans. Biomed. Eng201562921252134https://doi.org/10.1109/tbme.2015.240223610.1109/TBME.2015.240223625680203Search in Google Scholar

Elhaj FA, Salim N, Harris AR, Swee TT, Ahmed T. Arrhythmiarecognition and classification using combined linear andnonlinear features of ECG signals. computer methods andprogram in biomedicine. Elsevier. 2016; 127:52–63.https://doi.org/10.1016/j.cmpb.2015.12.024ElhajFASalimNHarrisARSweeTTAhmedTArrhythmiarecognition and classification using combined linear andnonlinear features of ECG signalscomputer methods andprogram in biomedicine. Elsevier20161275263https://doi.org/10.1016/j.cmpb.2015.12.02410.1016/j.cmpb.2015.12.02427000289Search in Google Scholar

Moody GB, Mark GR. The impact of the MIT-BIH Arrhythmiadatabase. IEEE Eng. Med. Biol. 2001; 20(3):45–50.https://doi.org/10.1109/51.932724MoodyGBMarkGRThe impact of the MIT-BIH ArrhythmiadatabaseIEEE Eng. Med. Biol20012034550https://doi.org/10.1109/51.93272410.1109/51.93272411446209Search in Google Scholar

Martis RJ, Acharya UR, Lim CM, Mandana K, Ray AK,Chakraborty C. Application of higher order cumulant featuresfor cardiac health diagnosis using ECG signals. Int. J. NeuralSyst. 2013; 23(4).https://doi.org/10.1142/s0129065713500147MartisRJAcharyaURLimCMMandanaKRayAKChakrabortyCApplication of higher order cumulant featuresfor cardiac health diagnosis using ECG signalsInt. J. NeuralSyst2013234https://doi.org/10.1142/s012906571350014710.1142/S012906571350014723746287Search in Google Scholar

Thomas M, Das MK, Ari S. Automatic ECG arrhythmiaclassification using dual tree complex wavelet based features.International Journal of Electronics and Communications(AEÜ). 2015; 69(4):715-721.https://doi.org/10.1016/j.aeue.2014.12.013ThomasMDasMKAriSAutomatic ECG arrhythmiaclassification using dual tree complex wavelet based featuresInternational Journal of Electronics and Communications(AEÜ)2015694715721https://doi.org/10.1016/j.aeue.2014.12.01310.1016/j.aeue.2014.12.013Search in Google Scholar

Acharya UR, Oh SL, Hagiwara Y, Tan JH, Adam M, Gertych A,San Tan R. A deep convolutional neural network model toclassify heartbeats. Computers in Biology and Medicine.2017; 89:389-396.https://doi.org/10.1016/j.compbiomed.2017.08.022AcharyaUROhSLHagiwaraYTanJHAdamMGertychASanTan RA deep convolutional neural network model toclassify heartbeatsComputers in Biology and Medicine201789389396https://doi.org/10.1016/j.compbiomed.2017.08.02210.1016/j.compbiomed.2017.08.02228869899Search in Google Scholar

Yang W, Si Y, Wang D, Guo B. Automatic recognition ofarrhythmia based on principal component analysis networkand linear support vector machine. Computers in Biology andMedicine. 2018; 101:22-32.https://doi.org/10.1016/j.compbiomed.2018.08.003YangWSiYWangDGuoBAutomatic recognition ofarrhythmia based on principal component analysis networkand linear support vector machineComputers in Biology andMedicine20181012232https://doi.org/10.1016/j.compbiomed.2018.08.00310.1016/j.compbiomed.2018.08.00330098452Search in Google Scholar

Oh SL, Ng EY, Tan RS, Acharya UR. Automated diagnosis ofarrhythmia using combination of CNN and LSTM techniqueswith variable length heart beats. Computers in Biology andMedicine. 2018; 102:278-287.https://doi.org/10.1016/j.compbiomed.2018.06.002OhSLNgEYTanRSAcharyaURAutomated diagnosis ofarrhythmia using combination of CNN and LSTM techniqueswith variable length heart beatsComputers in Biology andMedicine2018102278287https://doi.org/10.1016/j.compbiomed.2018.06.00210.1016/j.compbiomed.2018.06.00229903630Search in Google Scholar